简体   繁体   中英

Networkx: Overlapping edges when visualizing MultiGraph

The following multigraph plots correctly (ie parallel edges do not overlap) using graphviz neato to generate a png (as shown in this answer )

import networkx as nx
nx.MultiGraph ([(1,2),(1,2),(1,2),(3,1),(3,2)])
nx.write_dot(Gm,'multi.dot')
!neato -T png multi.dot > multi.png

However using the draw function of Networkx doesn't do the trick

nx.draw_graphviz(Gm,prog='neato')

Is it possible to prevent overlapping edges using the draw methods from Networkx?

Thanks

Unfortunately not. It is technically possible to do but so far nobody has written the code.

You can use matplotlib directly using the node positions you have calculated.

G=nx.MultiGraph ([(1,2),(1,2),(1,2),(3,1),(3,2)])
pos = nx.random_layout(G)
nx.draw_networkx_nodes(G, pos, node_color = 'r', node_size = 100, alpha = 1)
ax = plt.gca()
for e in G.edges:
    ax.annotate("",
                xy=pos[e[0]], xycoords='data',
                xytext=pos[e[1]], textcoords='data',
                arrowprops=dict(arrowstyle="->", color="0.5",
                                shrinkA=5, shrinkB=5,
                                patchA=None, patchB=None,
                                connectionstyle="arc3,rad=rrr".replace('rrr',str(0.3*e[2])
                                ),
                                ),
                )
plt.axis('off')
plt.show()

在此处输入图片说明

Well I know its probably not what you're looking for, but I was facing a similar problem where I wanted to have a directed graph where the edge between two nodes had a different weight depending on the direction (whether it was going into or out of the node) and the work around I did was I used a different color for each edge and decreased the opacity for one of them so it would show even if they overlap. I only needed two edges between my two nodes so it did the trick for me.

G = nx.DiGraph()
G.add_nodes_from([0,1])
pos = nx.circular_layout(G)
nx.draw_networkx_nodes(G, pos, node_color = 'r', node_size = 100, alpha = 1)
nx.draw_networkx_edges(G, pos, edgelist = [(0,1)], width = 2, alpha = 0.5, edge_color='b')
nx.draw_networkx_edges(G, pos, edgelist= [(1,0)], width = 1, alpha = 1)
plt.axis('off')
plt.show() 

在此处输入图片说明

An improvement to the answer above is adding the connectionstyle argument to nx.draw:

import networkx as nx
G = nx.DiGraph()
G.add_nodes_from([0,1])
pos = nx.circular_layout(G)
nx.draw_networkx_nodes(G, pos, connectionstyle='arc3, rad = 0.1', node_color = 'r', node_size = 100, alpha = 1)
nx.draw_networkx_edges(G, pos,connectionstyle='arc3, rad = 0.1', edgelist = [(0,1)], width = 2, alpha = 0.5, edge_color='b')
nx.draw_networkx_edges(G, pos,connectionstyle='arc3, rad = 0.1', edgelist= [(1,0)], width = 1, alpha = 1)
plt.axis('off')
plt.show() 

在此处查看结果

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM