简体   繁体   中英

CUDA: How do I use float audio data with cuFFT?

I'm interested in transforming an audio signal in cuFFT to get the data necessary to create a spectrogram. I seem to be losing all of my audio data when trying to convert from float to cufftReal before the transform. Also, I don't think my actual approach is correct for getting the correct result. Here is what I have so far:

void process_data(float *h_in_data_dynamic, sf_count_t samples, int channels) {
int nSamples = (int)samples;
int DATASIZE = 512;
int batch = nSamples / DATASIZE;

cufftHandle plan;

//this makes the data become all 0's.
cufftReal *d_in_data;
cudaMalloc((void**)&d_in_data, sizeof(cufftReal) * nSamples);
cudaMemcpy(d_in_data, (cufftReal*)h_in_data_dynamic, sizeof(cufftReal) * nSamples, cudaMemcpyHostToDevice);


cufftComplex *data;
cudaMalloc((void**)&data, sizeof(cufftComplex) * nSamples);


cufftComplex *hostOutputData = (cufftComplex*)malloc((DATASIZE / 2 + 1) * batch * sizeof(cufftComplex));

if (cudaGetLastError() != cudaSuccess) {
    fprintf(stderr, "Cuda error: Failed to allocate\n");
    return;
}

int rank = 1;                           // --- 1D FFTs
int n[] = { DATASIZE };                 // --- Size of the Fourier transform
int istride = 1, ostride = 1;           // --- Distance between two successive input/output elements
int idist = DATASIZE, odist = (DATASIZE / 2) + 1; // --- Distance between batches
int inembed[] = { 0 };                  // --- Input size with pitch (ignored for 1D transforms)
int onembed[] = { 0 };                  // --- Output size with pitch (ignored for 1D transforms)

cufftPlanMany(&plan, rank, n,
              inembed, istride, idist,
              onembed, ostride, odist, CUFFT_R2C, batch);

/* Use the CUFFT plan to transform the signal in place. */
if (cufftExecR2C(plan, d_in_data, data) != CUFFT_SUCCESS) {
    fprintf(stderr, "CUFFT error: ExecC2C Forward failed");
    return;
}

cudaMemcpy(hostOutputData, data, (DATASIZE / 2) + 1 * batch * sizeof(cufftComplex), cudaMemcpyDeviceToHost);

for (int i=0; i < batch; i++)
    for (int j=0; j < (DATASIZE / 2 + 1); j++)
        printf("%i %i %f %f\n", i, j, hostOutputData[i*(DATASIZE / 2 + 1) + j].x, hostOutputData[i*(DATASIZE / 2 + 1) + j].y);

cufftDestroy(plan);
cudaFree(data);
cudaFree(d_in_data);
}

There are a few issues that I can see.

  1. You should properly indent your code for readability.
  2. Any time you're having trouble, do proper error checking. It's a nitpick, but you didn't check the return code of the call to cufftPlanMany . You also aren't doing proper error checking on the last cudaMemcpy call.
  3. The sizes of these 2 allocations should match. They don't:

     cudaMalloc((void**)&data, sizeof(cufftComplex) * nSamples); cufftComplex *hostOutputData = (cufftComplex*)malloc((DATASIZE / 2 + 1) * batch * sizeof(cufftComplex)); 

    the size of the second allocation above is the correct one, and it should be duplicated for the first one.

  4. You have a basic typo in this line. You should have parenthesis where I have indicated:

     cudaMemcpy(hostOutputData, data, (DATASIZE / 2) + 1 * batch * sizeof(cufftComplex), cudaMemcpyDeviceToHost); ^ ^ 
  5. SO expects when you are seeking debugging help, that you provide an MCVE . It's not the responsibility of others to create a main routine for you, and synthesize data, and guess at what headers you are including and what sf_count_t is, and what you are trying to accomplish generally.

  6. Your routine is not taking into account channels . Likewise I have not either, since that is the not the issue here. But the use of multi-channel data will probably have an impact on the code, depending on data layout.

When I fix the above issues, I get something that makes sense to me.

$ cat t621.cu
#include <cufft.h>
#include <math.h>
#include <stdio.h>

#define FFTSIZE 512
#define DEBUG 0

typedef size_t sf_count_t;

void process_data(float *h_in_data_dynamic, sf_count_t samples, int channels) {
  int nSamples = (int)samples;
  int DATASIZE = FFTSIZE;
  int batch = nSamples / DATASIZE;

  cufftHandle plan;

  cufftReal *d_in_data;
  cudaMalloc((void**)&d_in_data, sizeof(cufftReal) * nSamples);
  cudaMemcpy(d_in_data, (cufftReal*)h_in_data_dynamic, sizeof(cufftReal) * nSamples, cudaMemcpyHostToDevice);

  cufftComplex *data;
  cudaMalloc((void**)&data, sizeof(cufftComplex) * batch * (DATASIZE/2 + 1));

  cufftComplex *hostOutputData = (cufftComplex*)malloc((DATASIZE / 2 + 1) * batch * sizeof(cufftComplex));

  if (cudaGetLastError() != cudaSuccess) {
    fprintf(stderr, "Cuda error: Failed to allocate\n");
    return;
  }

  int rank = 1;                           // --- 1D FFTs
  int n[] = { DATASIZE };                 // --- Size of the Fourier transform
  int istride = 1, ostride = 1;           // --- Distance between two successive input/output elements
  int idist = DATASIZE, odist = (DATASIZE / 2) + 1; // --- Distance between batches
  int inembed[] = { 0 };                  // --- Input size with pitch (ignored for 1D transforms)
  int onembed[] = { 0 };                  // --- Output size with pitch (ignored for 1D transforms)

  if(cufftPlanMany(&plan, rank, n,
              inembed, istride, idist,
              onembed, ostride, odist, CUFFT_R2C, batch) != CUFFT_SUCCESS){
    fprintf(stderr, "CUFFT error: Plan failed");
    return;
  }

/* Use the CUFFT plan to transform the signal in place. */
  if (cufftExecR2C(plan, d_in_data, data) != CUFFT_SUCCESS) {
    fprintf(stderr, "CUFFT error: ExecR2C Forward failed");
    return;
  }

  cudaMemcpy(hostOutputData, data, ((DATASIZE / 2) + 1) * batch * sizeof(cufftComplex), cudaMemcpyDeviceToHost);
  if (cudaGetLastError() != cudaSuccess) {
    fprintf(stderr, "Cuda error: Failed results copy\n");
    return;
  }

  float *spectrum = (float *)malloc((DATASIZE/2)*sizeof(float));
  for (int j = 0; j < (DATASIZE/2); j++) spectrum[j] = 0.0f;
  for (int i=0; i < batch; i++)
    for (int j=0; j < (DATASIZE / 2 + 1); j++){
#if DEBUG
        printf("%i %i %f %f\n", i, j, hostOutputData[i*(DATASIZE / 2 + 1) + j].x, hostOutputData[i*(DATASIZE / 2 + 1) + j].y);
#endif
        // compute spectral magnitude
        // note that cufft induces a scale factor of FFTSIZE
        if (j < (DATASIZE/2)) spectrum[j] += sqrt(pow(hostOutputData[i*(DATASIZE/2 +1) +j].x, 2) + pow(hostOutputData[i*(DATASIZE/2 +1) +j].y, 2))/(float)(batch*DATASIZE);
        }
  //assumes Fs is half of FFTSIZE, or we could pass Fs separately
  printf("Spectrum\n Hz:   Magnitude:\n");
  for (int j = 0; j < (DATASIZE/2); j++) printf("%.3f %.3f\n", j/2.0f, spectrum[j]);

  cufftDestroy(plan);
  cudaFree(data);
  cudaFree(d_in_data);
}

int main(){

  const int nsets = 20;
  const float sampling_rate = FFTSIZE/2;
  const float amplitude = 1.0;
  const float fc1 = 6.0;
  const float fc2 = 4.5;
  float *my_data;

  my_data = (float *)malloc(nsets*FFTSIZE*sizeof(float));
  //generate synthetic data that is a mix of 2 sine waves at fc1 and fc2 Hz
  for (int i = 0; i < nsets*FFTSIZE; i++)
    my_data[i] = amplitude*sin(fc1*(6.283/sampling_rate)*i)
               + amplitude*sin(fc2*(6.283/sampling_rate)*i);

  process_data(my_data, nsets*FFTSIZE, 1);
  return 0;
}


$ nvcc -arch=sm_20 -o t621 t621.cu -lcufft
$ ./t621
 Hz:   Magnitude:
0.000 0.000
0.500 0.000
1.000 0.000
1.500 0.000
2.000 0.000
2.500 0.000
3.000 0.000
3.500 0.000
4.000 0.000
4.500 0.500
5.000 0.000
5.500 0.000
6.000 0.500
6.500 0.000
7.000 0.000
7.500 0.000
8.000 0.000
8.500 0.000
9.000 0.000
9.500 0.000
10.000 0.000
10.500 0.000
11.000 0.000
11.500 0.000
12.000 0.000
12.500 0.000
13.000 0.000
13.500 0.000
14.000 0.000
14.500 0.000
15.000 0.000
15.500 0.000
16.000 0.000
16.500 0.000
17.000 0.000
17.500 0.000
18.000 0.000
18.500 0.000
19.000 0.000
19.500 0.000
20.000 0.000
20.500 0.000
21.000 0.000
21.500 0.000
22.000 0.000
22.500 0.000
23.000 0.000
23.500 0.000
24.000 0.000
24.500 0.000
25.000 0.000
25.500 0.000
26.000 0.000
26.500 0.000
27.000 0.000
27.500 0.000
28.000 0.000
28.500 0.000
29.000 0.000
29.500 0.000
30.000 0.000
30.500 0.000
31.000 0.000
31.500 0.000
32.000 0.000
32.500 0.000
33.000 0.000
33.500 0.000
34.000 0.000
34.500 0.000
35.000 0.000
35.500 0.000
36.000 0.000
36.500 0.000
37.000 0.000
37.500 0.000
38.000 0.000
38.500 0.000
39.000 0.000
39.500 0.000
40.000 0.000
40.500 0.000
41.000 0.000
41.500 0.000
42.000 0.000
42.500 0.000
43.000 0.000
43.500 0.000
44.000 0.000
44.500 0.000
45.000 0.000
45.500 0.000
46.000 0.000
46.500 0.000
47.000 0.000
47.500 0.000
48.000 0.000
48.500 0.000
49.000 0.000
49.500 0.000
50.000 0.000
50.500 0.000
51.000 0.000
51.500 0.000
52.000 0.000
52.500 0.000
53.000 0.000
53.500 0.000
54.000 0.000
54.500 0.000
55.000 0.000
55.500 0.000
56.000 0.000
56.500 0.000
57.000 0.000
57.500 0.000
58.000 0.000
58.500 0.000
59.000 0.000
59.500 0.000
60.000 0.000
60.500 0.000
61.000 0.000
61.500 0.000
62.000 0.000
62.500 0.000
63.000 0.000
63.500 0.000
64.000 0.000
64.500 0.000
65.000 0.000
65.500 0.000
66.000 0.000
66.500 0.000
67.000 0.000
67.500 0.000
68.000 0.000
68.500 0.000
69.000 0.000
69.500 0.000
70.000 0.000
70.500 0.000
71.000 0.000
71.500 0.000
72.000 0.000
72.500 0.000
73.000 0.000
73.500 0.000
74.000 0.000
74.500 0.000
75.000 0.000
75.500 0.000
76.000 0.000
76.500 0.000
77.000 0.000
77.500 0.000
78.000 0.000
78.500 0.000
79.000 0.000
79.500 0.000
80.000 0.000
80.500 0.000
81.000 0.000
81.500 0.000
82.000 0.000
82.500 0.000
83.000 0.000
83.500 0.000
84.000 0.000
84.500 0.000
85.000 0.000
85.500 0.000
86.000 0.000
86.500 0.000
87.000 0.000
87.500 0.000
88.000 0.000
88.500 0.000
89.000 0.000
89.500 0.000
90.000 0.000
90.500 0.000
91.000 0.000
91.500 0.000
92.000 0.000
92.500 0.000
93.000 0.000
93.500 0.000
94.000 0.000
94.500 0.000
95.000 0.000
95.500 0.000
96.000 0.000
96.500 0.000
97.000 0.000
97.500 0.000
98.000 0.000
98.500 0.000
99.000 0.000
99.500 0.000
100.000 0.000
100.500 0.000
101.000 0.000
101.500 0.000
102.000 0.000
102.500 0.000
103.000 0.000
103.500 0.000
104.000 0.000
104.500 0.000
105.000 0.000
105.500 0.000
106.000 0.000
106.500 0.000
107.000 0.000
107.500 0.000
108.000 0.000
108.500 0.000
109.000 0.000
109.500 0.000
110.000 0.000
110.500 0.000
111.000 0.000
111.500 0.000
112.000 0.000
112.500 0.000
113.000 0.000
113.500 0.000
114.000 0.000
114.500 0.000
115.000 0.000
115.500 0.000
116.000 0.000
116.500 0.000
117.000 0.000
117.500 0.000
118.000 0.000
118.500 0.000
119.000 0.000
119.500 0.000
120.000 0.000
120.500 0.000
121.000 0.000
121.500 0.000
122.000 0.000
122.500 0.000
123.000 0.000
123.500 0.000
124.000 0.000
124.500 0.000
125.000 0.000
125.500 0.000
126.000 0.000
126.500 0.000
127.000 0.000
127.500 0.000
$

The indicated spectrum has spikes at 4.5Hz and 6.0Hz, as we would expect based on the composition of the synthetic input data. Note that the question does not appear to be about the mechanics of spectral computation, and I am not an expert in that. The purpose is to generate a set of output data that allows us to easily validate the results. I'm not suggesting this spectral computation is useful for any particular purpose, or correct according to any mathematics. The purpose here is to root out the underlying cuda errors in your code.

As an additional comment, your code was set up to do a piecewise FFT on an arbitrary length input data set size (my interpretation, based on your usage of batch ). So that is how I crafted my result. I think it's a reasonable thing to do, but whether it makes sense for your particular use-case, I don't know.

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM