简体   繁体   中英

Variadic templates, type deduction and std::function

I'm trying to make a template function to which is possible to pass some other function with any type and number of parameters and bind it to a std::function . I managed to do this:

#include <iostream>
#include <functional>

int foo(int bar)
{
  std::cout << bar << std::endl;
  return bar;
}

template <typename Ret, typename... Args>
std::function<Ret (Args...)> func(std::function<Ret (Args...)> f)
{
  return f;
}

int main()
{
  //auto barp = func(foo); // compilation error
  auto bar  = func(std::function<void (int)>(foo));

  bar (0); // prints 0
}

I would like to just call auto barp = func(foo); and have the types deduced, but this line gives the following compilation errors:

error: no matching function for call to ‘func(void (&)(int))’
    auto barp = func(foo);
                        ^
note: candidate is:
note: template<class Ret, class ... Args> std::function<_Res(_ArgTypes ...)> func(std::function<_Res(_ArgTypes ...)>)
 std::function<Ret (Args...)> func(std::function<Ret (Args...)> f)
                              ^
note:   template argument deduction/substitution failed:
note:   mismatched types ‘std::function<_Res(_ArgTypes ...)>’ and ‘int (*)(int)’
   auto barp = func(foo);
                       ^

Why is it trying to match std::function<_Res(_ArgTypes ...)> with int (*)(int) ? I feel I should get the compiler somehow to expand _Res(_ArgTypes ...) to int(int) , but how?

A function is not an std::function , it is convertible to one. You can deduce the arguments of a function, however, barring ambiguity about overloads.

#include <iostream>
#include <functional>

int foo(int bar)
{
  std::cout << bar << std::endl;
  return 0;
}

// Will cause error.
//int foo(double); 

template <typename Ret, typename... Args>
std::function<Ret (Args...)> func(Ret f(Args...))
{
  return f;
}

int main()
{
  auto bar = func(foo);
  bar (0); // prints 0
}

What you want to do with the original std::function is similar to this, which more obviously does not work:

template<typename T>
struct A
{
  A(T);  
};

template<typename T>
void func(A<T> a);

int main()
{
    func(42);
}

42 is not a A , it can be converted to one, though. However, converting it to one would require T to already be known.

Your code is semantically equivalent to (if it compiled) this:

int foo(int x){
    std::cout << x << std::endl;
    return x;
}

int main(){
    auto bar = [](int x){ return foo(x); };
    bar(0);
}

Apart from the return x part, but that's just me correcting your undefined behaviour.

Your function for returning an std::function is extremely unnecessary, except maybe for the sake of less typing.

You could just as easily use std::function s constructor without the wrapper function.

But, still.

To do what you want to do, you should pass the function pointer itself; without impossible conversion.

try this:

int foo(int x){
    return x + 1;
}

template<typename Ret, typename ... Args>
auto func(Ret(*fp)(Args...)) -> std::function<Ret(Args...)>{
    return {fp};
}

int main(){
    auto bar = func(foo);
    std::cout << bar(0) << std::endl; // outputs '1'
}

The reason your code doesn't work is because of the implicit conversion trying to take place when you pass an argument to func .

As I said, your code currently is semantically equivalent to the example I showed above using lambda expressions. I would strongly recommend just using lambda expressions wherever function wrapping is needed! They're much more flexible and are a core part of the language rather than a library feature.

Remember, non-capturing lambdas are convertible to function pointers; so the following is conforming:

int main(){
    int(*bar)(int) = [](int x){ return x + 1; };
    std::cout << bar(0) << std::endl;
}

and to have similar functionality as you want in your post, we could write something like this:

int main(){
    auto func = +[](int x){ return x + 1; };

    std::cout << "foo(5) = " << func(5) << std::endl;

    func = [](int x){ return x * 2; };

    std::cout << "bar(5) = " << func(5) << std::endl;
}

Notice we don't mess around with function pointer declarations or library types? Much nicer for everybody to read/write. One thing to notice in this example is the unary + operator; to perform a conversion to function pointer before assigning it to the variable. It actually looks very functional , which seems to be what you're trying to achieve here.

Try to unwrap the functor (lambda and std::function) through its operator() :

#include <iostream>
#include <functional>

int foo(int bar)
{
    std::cout << bar << std::endl;
    return 0;
}

template<typename /*Fn*/>
struct function_maker;

template<typename RTy, typename... ATy>
struct function_maker<RTy(ATy...)>
{
    template<typename T>
    static std::function<RTy(ATy...)> make_function(T&& fn)
    {
        return std::function<RTy(ATy...)>(std::forward<T>(fn));
    }
};

template<typename /*Fn*/>
struct unwrap;

template<typename CTy, typename RTy, typename... ATy>
struct unwrap<RTy(CTy::*)(ATy...) const>
    : function_maker<RTy(ATy...)> { };

template<typename CTy, typename RTy, typename... ATy>
struct unwrap<RTy(CTy::*)(ATy...)>
    : function_maker<RTy(ATy...)> { };

template<typename T>
auto func(T f)
    -> decltype(unwrap<decltype(&T::operator())>::make_function(std::declval<T>()))
{
    return unwrap<decltype(&T::operator())>::make_function(std::forward<T>(f));
}

int main()
{
    //auto barp = func(foo); // compilation error
    auto bar = func(std::function<void(int)>(foo));

    auto bar2 = func([](int)
    {
        // ...
    });

    bar(0); // prints 0
}

Demo

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM