简体   繁体   中英

how to find the shortest path in a matrix

I have a question in JAVA I can't solve no matter how long I try to think about the solution: There's a matrix and I need to find the shortest path possible to get from Mat[0][0] to the bottom right of the matrix and I can only proceed to the adjacent square (no diagonals) if the number in it is bigger than the one I'm on right now.

For example:
    0   1   2   3   4
0 { 5   13  2   5   2 
1   58  24  32  3   24 
2   2   7   33  1   7 
3   45  40  37  24  70
4   47  34  12  25  2 
5   52  56  68  76  100}

So a valid solution would be: (0,0)->(0,1)->(1,1)->(2,1)->(2,2)->(2,3)->(3,1)->(3,0)->(0,4)->(0,5)->(5,1)->(5,2)->(5,3)->(5,4)

And the method will return 14 because that's the shortest possible path.

I have to use a recursive method only (no loops).

This is what I came up with so far but I don't know how to figure out which is the shortest one.

Public static int shortestPath(int[][]mat)
{
    int length=0;
    int i=0;
    int j=0;
    shortestPath(mat, length, i, j);
}


Private static int shortestPath(int[][]math, int length, int i, int j)
{
    if((i==mat.length)||(j==mat[i].length))
        return length;
    if(shortestPath(mat, length, i+1, j) > shortestPath(mat, length, i, j))
        return length +1;
    if(shortestPath(mat, length, i, j+1) > shortestPath(mat, length, i, j))
        return length +1;
    if shortestPath(mat, length, i-1, j) > shortestPath(mat, length, i, j))
        return length +1;
    if shortestPath(mat, length, i, j-1) > shortestPath(mat, length, i, j))
        return length +1;
}

I'm not sure if that's the way to do it, and if it is: how do I know which is the shortest way, because right now it would return all possible ways and will add them together (I think). Also, I think I should add something about reaching the bottom right of the matrix.

The code shouldn't be too complicated.

im not sure if the approach of going to the next smallest value is the shortest, but anyway:

public class Pathfinder {

    private int[][] matrix;
    private int matrixLenghtI;
    private int matrixLenghtJ;

    public Pathfinder(int[][] matrix, int matrixLenghtI, int matrixLenghtJ) {
        this.matrix = matrix;
        this.matrixLenghtI = matrixLenghtI;
        this.matrixLenghtJ = matrixLenghtJ;
    }

    public static void main(String[] args) {

        int matrixLenghtI = 6;
        int matrixLenghtJ = 5;

        int[][] matrix1 = { { 3, 13, 15, 28, 30 }, { 40, 51, 52, 29, 30 }, { 28, 10, 53, 54, 54 },
                { 53, 12, 55, 53, 60 }, { 70, 62, 56, 20, 80 }, { 80, 81, 90, 95, 100 } };

        int[][] matrix2 = { { 5, 13, 2, 5, 2 }, { 58, 24, 32, 3, 24 }, { 2, 7, 33, 1, 7 }, { 45, 40, 37, 24, 70 },
                { 47, 34, 12, 25, 2 }, { 52, 56, 68, 76, 100 } };

        Pathfinder finder1 = new Pathfinder(matrix1, matrixLenghtI, matrixLenghtJ);
        finder1.run();

        Pathfinder finder2 = new Pathfinder(matrix2, matrixLenghtI, matrixLenghtJ);
        finder2.run();
    }

    private void run() {
        int i = 0;
        int j = 0;

        System.out.print("(" + i + "," + j + ")");
        System.out.println("\nLength: " + find(i, j));
    }

    private int find(int i, int j) {
        int value = matrix[i][j];
        int[] next = { i, j };

        int smallestNeighbour = 101;
        if (i > 0 && matrix[i - 1][j] > value) {
            smallestNeighbour = matrix[i - 1][j];
            next[0] = i - 1;
            next[1] = j;
        }
        if (j > 0 && matrix[i][j - 1] < smallestNeighbour && matrix[i][j - 1] > value) {
            smallestNeighbour = matrix[i][j - 1];
            next[0] = i;
            next[1] = j - 1;
        }
        if (i < matrixLenghtI - 1 && matrix[i + 1][j] < smallestNeighbour && matrix[i + 1][j] > value) {
            smallestNeighbour = matrix[i + 1][j];
            next[0] = i + 1;
            next[1] = j;
        }
        if (j < matrixLenghtJ - 1 && matrix[i][j + 1] < smallestNeighbour && matrix[i][j + 1] > value) {
            smallestNeighbour = matrix[i][j + 1];
            next[0] = i;
            next[1] = j + 1;
        }

        System.out.print("->(" + next[0] + "," + next[1] + ")");

        if (i == matrixLenghtI - 1 && j == matrixLenghtJ - 1)
            return 1;

        return find(next[0], next[1]) + 1;
    }
}

Output:

(0,0)->(0,1)->(0,2)->(0,3)->(1,3)->(1,4)->(2,4)->(3,4)->(4,4)->(5,4)->(5,4)
Length: 10
(0,0)->(0,1)->(1,1)->(1,2)->(2,2)->(3,2)->(3,1)->(3,0)->(4,0)->(5,0)->(5,1)->(5,2)->(5,3)->(5,4)->(5,4)
Length: 14

I really like this problem. Unfortunately I haven't worked in Java for many years, so this answer is pseudo-Java and you'll have to fix some of the syntax. Probably some of the function params should be references and not copies; you'll figure it out (update: I've added a TESTED version in python below).

// just a little thing to hold a set of coordinates
class Position 
{
    // not bothering with private / getters
    public int x ;
    public int y ;
    public constructor (int x, int y) 
    {
        this.x = x ;
        this.y = y ;
    }
}

class PathFinder
{
    public void main (void)
    {
        // create a path with just the start position
        start = new Position(0, 0) ;
        path = new Vector() ;
        path.add(start) ;
        // create an empty path to contain the final shortest path
        finalPath = new Vector() ;
        findPath(path, finalPath) ;
        print ("Shortest Path: ") ;
        showPath (finalPath) ;
    }

    private void showPath (Vector path) {
        // print out each position in the path
        iter = path.iterator() ;
        while (pos = iter.next()) {
            print ("(%, %) ", pos.x, pos.y);
        }
        // print out the length of the path
        print ("  Length: %\n", path.size()) ;
    }

    // recursive function to find shortest path
    private void findPath (Vector path, Vector finalPath)
    {
        // always display the current path (it should never be the same path twice)
        showPath(path) ;

        // where are we now?
        here = path.lastElement() ;

        // does the current path find the exit (position 4,5)?
        if (here.x == 4 && here.y == 5) {
            if (finalPath.size() == 0) {
                //finalPath is empty, put the current path in finalPath
                finalPath = path ;
            } else {
                // some other path found the exit already.  Which path is shorter?
                if (finalPath.size() > path.size()) {
                    finalPath = path ;
                }
            }
            // either way, we're at the exit and this path goes no further
            return ;
        }

        // path is not at exit; grope in all directions
        // note the code duplication in this section is unavoidable
        // because it may be necessary to start new paths in three
        // directions from any given position
        // If no new paths are available from the current position,
        // no new calls to findPath() will happen and 
        // the recursion will collapse.

        if (here.x > 0 && matrix[here.x-1][here.y] > matrix[here.x][here.y]) {
            // we can move left
            newPos = new Position(here.x-1, here.y) ;
            newPath = path ;
            newPath.add (newPos) ;
            findPath(newPath, finalPath) ;
        }

        if (here.x < 4 && matrix[here.x+1][here.y] > matrix[here.x][here.y]) {
            // we can move right
            newPos = new Position(here.x+1, here.y) ;
            newPath = path ;
            newPath.add (newPos) ;
            findPath(newPath, finalPath) ;
        }

        if (here.y > 0 && matrix[here.x][here.y-1] > matrix[here.x][here.y]) {
            // we can move up
            newPos = new Position(here.x, here.y-1) ;
            newPath = path ;
            newPath.add (newPos) ;
            findPath(newPath, finalPath) ;
        }

        if (here.y < 5 && matrix[here.x][here.y+1] > matrix[here.x][here.y]) {
            // we can move down
            newPos = new Position(here.x, here.y+1) ;
            newPath = path ;
            newPath.add (newPos) ;
            findPath(newPath, finalPath) ;
        }
    }
}

Here's a tested version of the same algorithm in python. (I noticed that using x, y as coordinates is kind of misleading. x is actually "vertical" and y is "horizontal" with the array indexed the way it is. I've set up a matrix with four paths to the exit and a couple of dead ends.)

import copy, sys

matrix = [
        [5,  13, 17, 58,   2], 
        [17, 24, 32,  3,  24],
        [23,  7, 33,  1,   7],
        [45, 40, 37, 38,  70],
        [47, 34, 12, 25,   2],
        [52, 56, 68, 76, 100]]

def showPath(path):
    for position in path:
        sys.stdout.write("(" + str(position[0]) + ", " + str(position[1]) + "), ")
    sys.stdout.write("\n\n")
    sys.stdout.flush()

def findPath(path):
    #showPath(path)
    global finalPath
    x = path[-1][0]
    y = path[-1][1]
    if x == 5 and y == 4:
        showPath(path)
        if len(finalPath) == 0 or len(finalPath) > len (path):
            finalPath[:] = copy.deepcopy(path)
        return
    if x > 0 and matrix[x-1][y] > matrix[x][y]:
        # we can move up
        newPath = copy.deepcopy(path)
        newPath.append([x-1, y])
        findPath(newPath)
    if x < 5 and matrix[x+1][y] > matrix[x][y]:
        # we can move down
        newPath = copy.deepcopy(path)
        newPath.append([x+1, y])
        findPath(newPath)
    if y > 0 and matrix[x][y-1] > matrix[x][y]:
        # we can move left
        newPath = copy.deepcopy(path)
        newPath.append([x, y-1])
        findPath(newPath)
    if y < 4 and matrix[x][y+1] > matrix[x][y]:
        # we can move right
        newPath = copy.deepcopy(path)
        newPath.append([x, y+1])
        findPath(newPath)

path = []
path.append([0, 0])
finalPath = []
findPath(path)
print "Shortest Path: " + str(len(finalPath)) + " steps.\n"
showPath(finalPath)

If you uncomment the first showPath() call in findPath() you can see every step and see where the dead ends get abandoned. If you only show paths that reach the exit, the output looks like:

(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4), 
(0, 0), (1, 0), (1, 1), (1, 2), (2, 2), (3, 2), (3, 1), (3, 0), (4, 0), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4), 
(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (3, 2), (3, 1), (3, 0), (4, 0), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4), 
(0, 0), (0, 1), (0, 2), (1, 2), (2, 2), (3, 2), (3, 1), (3, 0), (4, 0), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4), 
Shortest Path: 10 steps.
(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4),

Position class:

/**
 * Represents a position in the matrix.
 */
public class Position {

    final private int x;
    final private int y;

    public Position(int x, int y) {
        this.x = x;
        this.y = y;
    }

    public int getX() {
        return x;
    }

    public int getY() {
        return y;
    }

    @Override
    public String toString() {
        return "(" + x + ", " + y + ')';
    }

    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) return false;

        Position position = (Position) o;

        if (x != position.x) return false;
        return y == position.y;

    }

    @Override
    public int hashCode() {
        int result = x;
        result = 31 * result + y;
        return result;
    }
}

Board class:

/**
 * A board represents all of the locations in the matrix.  It provides a simple interface to getting
 * the value in a position, and tracking the height and width of the matrix.
 */
public class Board {
    final int [][] board;

    public Board(int[][] board) {
        this.board = board;
    }

    final int positionValue(Position position) {
        return this.board[position.getY()][position.getX()];
    }

    final int getWidth() {
        return board[0].length;
    }

    final int getHeight() {
        return board.length;
    }
}

PathFinder class:

import java.util.ArrayList;
import java.util.List;

/**
 * Find the shortest path from a starting point to ending point in a matrix, assuming you can
 * only move to a position with a greater value than your current position.
 */
public class PathFinder {

    final private Board board;
    final private Position start;
    final private Position end;


    public PathFinder(Board board, int startX, int startY, int endX, int endY) {
        this.board = board;
        this.start = new Position(startX, startY);
        this.end = new Position(endX, endY);
    }

    /**
     * Gets the shortest path from the start to end positions.  This method
     * takes all of the paths, then determines which one is shortest and returns that.
     *
     * @return the shortest path from the start to end positions.
     */
    public List<Position> shortestPath() {

        List<List<Position>> allPaths = this.getAllPaths();

        System.out.println("Paths found: " + allPaths.size());
        List<Position> shortestPath = null;

        for (List<Position> path : allPaths) {
            if (shortestPath == null) {
                shortestPath = path;
            }
            else if (shortestPath.size() > path.size()) {
                shortestPath = path;
            }
        }

        return shortestPath;
    }

    /**
     * Convenience method for starting the getAllPaths process.
     *
     * @return all of the paths from the start to end positions
     */
    private List<List<Position>> getAllPaths() {
        List<List<Position>> paths = new ArrayList<List<Position>>();
        return this.getAllPaths(paths, new ArrayList<Position>(), start);
    }

    /**
     * Gets all of the paths from the start to end position.  This is   done recursively by visiting every
     * position, while following the rules that you can only move to a  position with a value greater
     * than the position you're currently on.  When reaching the end position, the path is added to
     * the list of all found paths, which is returned.
     *
     * @param paths the current list of all found paths.
     * @param path the current path
     * @param position the current position
     * @return all paths from the start to end positions
     */
    private List<List<Position>> getAllPaths(List<List<Position>> paths, List<Position> path, Position position) {
        path.add(position);
        if (position.equals(end)) {
            paths.add(path);
            return paths;
        }

        //x+
        if (position.getX() + 1 < board.getWidth()) {
            Position xp = new Position(position.getX() + 1, position.getY());
            if (board.positionValue(position) < board.positionValue(xp)) {
                getAllPaths(paths, new ArrayList<Position>(path), xp);
            }
        }
        //x-
        if (position.getX() - 1 >= 0) {
            Position xm = new Position(position.getX() - 1, position.getY());
            if (board.positionValue(position) < board.positionValue(xm)) {
                getAllPaths(paths, new ArrayList<Position>(path), xm);
            }
        }
        //y+
        if (position.getY() + 1 < board.getHeight()) {
            Position yp = new Position(position.getX(), position.getY() + 1);
            if (board.positionValue(position) < board.positionValue(yp)) {
                getAllPaths(paths, new ArrayList<Position>(path), yp);
            }
        }
        //y-
        if (position.getY() - 1 >= 0) {
            Position ym = new Position(position.getX(), position.getY() - 1);
            if (board.positionValue(position) < board.positionValue(ym)) {
                getAllPaths(paths, new ArrayList<Position>(path), ym);
            }
        }

        return paths;
    }

    /**
     * Run the example then print the results.
     *
     * @param args na
     */
    public static void main(String[] args) {
        int [][] array = {{5, 13, 2, 5, 2},
                            {14, 24, 32, 3, 24},
                            {15, 7, 33, 1, 7},
                            {45, 40, 37, 24, 70},
                            {47, 34, 12, 25, 2},
                            {52, 56, 68, 76, 100}
        };

        final Board board = new Board(array);
        final Position end = new Position(board.getWidth()-1, board.getHeight() - 1);
        final PathFinder pathFinder = new PathFinder(board, 0, 0, board.getWidth()-1, board.getHeight()-1);

        final List<Position> path = pathFinder.shortestPath();

        System.out.println("Shortest Path: ");
        for (Position position : path) {
            if (!position.equals(end)) {
                System.out.print(position + " -> ");
            }
            else {
                System.out.println(position);
            }
        }
        System.out.println();
    }
}

here you can build a tree to all possibilities and take then the shortest. There is a loop inside for tracing the result, but you can also get around that with some ugly ifs...

import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.Map;
import java.util.Map.Entry;
import java.util.TreeMap;

public class BetterPathfinder {

    public class Comperator implements Comparator<Path> {

        @Override
        public int compare(Path o1, Path o2) {
            return o1.getValue().compareTo(o2.getValue());
        }
    }

    public class Path {

        private Integer lenght;
        TreeMap<Integer, String> trace = new TreeMap<>();

        public Path(int lenght) {
            this.lenght = lenght;
        }

        public Path(Path find, int i, int j) {
            this.lenght = find.getValue() + 1;
            this.trace.putAll(find.getTrace());

            this.trace.put(lenght, "(" + i + "," + j + ")");
        }

        private Map<Integer, String> getTrace() {
            return trace;
        }

        public Integer getValue() {
            return lenght;
        }

        @Override
        public String toString() {
            String res = "end";
            for (Entry<Integer, String> is : trace.entrySet()) {
                res = is.getValue() + "->" + res;
            }
            return res;
        }

    }

    private int[][] matrix;
    private int matrixLenghtI;
    private int matrixLenghtJ;

    public BetterPathfinder(int[][] matrix, int matrixLenghtI, int matrixLenghtJ) {

        this.matrix = matrix;
        this.matrixLenghtI = matrixLenghtI;
        this.matrixLenghtJ = matrixLenghtJ;

    }

    public static void main(String[] args) {

        int matrixLenghtI = 6;
        int matrixLenghtJ = 5;

        int[][] matrix1 = { { 3, 13, 15, 28, 30 }, { 40, 51, 52, 29, 30 }, { 28, 10, 53, 54, 54 },
                { 53, 12, 55, 53, 60 }, { 70, 62, 56, 20, 80 }, { 80, 81, 90, 95, 100 } };

        int[][] matrix2 = { { 5, 13, 2, 5, 2 }, { 58, 24, 32, 3, 24 }, { 2, 7, 33, 1, 7 }, { 45, 40, 37, 24, 70 },
                { 47, 34, 12, 25, 2 }, { 52, 56, 68, 76, 100 } };

        BetterPathfinder finder1 = new BetterPathfinder(matrix1, matrixLenghtI, matrixLenghtJ);
        finder1.run();

        BetterPathfinder finder2 = new BetterPathfinder(matrix2, matrixLenghtI, matrixLenghtJ);
        finder2.run();
    }

    private void run() {
        int i = 0;
        int j = 0;

        System.out.println(new Path(find(i, j), i, j));
    }

    private Path find(int i, int j) {
        int value = matrix[i][j];
        int[] next = { i, j };

        ArrayList<Path> test = new ArrayList<>();

        if (i == matrixLenghtI - 1 && j == matrixLenghtJ - 1)
            return new Path(1);

        if (i > 0 && matrix[i - 1][j] > value) {
            next[0] = i - 1;
            next[1] = j;

            test.add(new Path(find(next[0], next[1]), next[0], next[1]));
        }
        if (j > 0 && matrix[i][j - 1] > value) {
            next[0] = i;
            next[1] = j - 1;
            test.add(new Path(find(next[0], next[1]), next[0], next[1]));
        }
        if (i < matrixLenghtI - 1 && matrix[i + 1][j] > value) {
            next[0] = i + 1;
            next[1] = j;
            test.add(new Path(find(next[0], next[1]), next[0], next[1]));
        }
        if (j < matrixLenghtJ - 1 && matrix[i][j + 1] > value) {
            next[0] = i;
            next[1] = j + 1;
            test.add(new Path(find(next[0], next[1]), next[0], next[1]));
        }

        if (test.isEmpty()) {
            return new Path(100);
        }

        return Collections.min(test, new Comperator());
    }
}

result:

(0,0)->(1,0)->(1,1)->(1,2)->(2,2)->(3,2)->(4,2)->(5,2)->(5,3)->(5,4)->end
(0,0)->(0,1)->(1,1)->(1,2)->(2,2)->(3,2)->(3,1)->(3,0)->(4,0)->(5,0)->(5,1)->(5,2)->(5,3)->(5,4)->end

You want a recursive strategy. A pretty easy, though expensive method, is to simply flood the board. Something like "Try every possible path and compute the distance" .

You can do this recursively by imagining moving a pebble around.

public int shortestPath(Point src, Point dest) {
    if (src.equals(dest)) {
            return 0;
    }

    // You need to do some bound checks here
    int left = shortestPath(new Point(src.x - 1, src.y), dest);
    int right = shortestPath(new Point(src.x + 1, src.y), dest);
    int up = shortestPath(new Point(src.x, src.y + 1), dest);
    int down = shortestPath(new Point(src.x, src.y - 1), dest);

    // Decide for the direction that has the shortest path
    return min(left, right, up, down) + 1;
}

If you are interested in the path represented by the solution, you may trace the path while creating. For this you simply need to save for which direction min decided.

I needed to solve a similar task ages ago in my computer science studies. We needed to compute the shortest amount of moves a knight on a chess board needs for reaching a given destination . Maybe this also helps you: http://pastebin.com/0xwMcQgj

public class shortestPath{
public static int shortestPath(int[][] mat){
    if(mat == null || mat.length == 0 || mat[0].length == 0)
        return 0;
    else {
        int n = shortestPath(mat, 0, 0, 0);
        return (n == mat.length*mat.length+1 ) ? 0 : n;
    }
}

private static int shortestPath(int[][]mat, int row, int col,int prev){

    if (!valid(mat,row,col) || !(mat[row][col] > prev)){
        return mat.length*mat.length+1;
    } else if(row == mat.length - 1 && col == mat[row].length - 1) {
        return 1;
    } else {
        return minimum(shortestPath(mat,row-1,col, mat[row][col]), 
            shortestPath(mat,row+1,col, mat[row][col]),
            shortestPath(mat,row,col-1, mat[row][col]),
            shortestPath(mat,row,col+1, mat[row][col])) + 1;
    }
}

private static boolean valid(int[][]mat,int row, int col){
    if(row < 0 || col < 0 || col > mat[0].length-1 || row > mat.length-1)
        return false;
    else
        return true;
}

private static int minimum(int x, int y, int t, int z){
    int min1 = (x > y)? y : x;
    int min2 = (t > z)? z : t;

    return (min1 > min2)? min2 : min1;
}

public static void main(String[] args){

    int maze[][] = {
            {  3, 13, 15, 28, 30},
            { 40, 51, 52, 29, 30},
            { 28, 10, 53, 54, 53},
            { 53, 12, 55, 53, 60},
            { 70, 62, 56, 20, 80},
            { 81, 81, 90, 95, 100}};

    System.out.println(shortestPath(maze));
}

}

Here is how I solved it, note that in your example we should get 16

public static void main(String[] args)
{
    int[][] mat = 
        { 
                { 3, 13, 15, 28, 30 }, 
                { 40, 51, 52, 29, 30 }, 
                { 28, 10, 53, 54, 53 }, 
                { 53, 12, 55, 53, 60 },
                { 70, 62, 56, 20, 80 }, 
                { 80, 81, 90, 95, 100 } 
        };
    System.out.println(shortestPath(mat)); // 10
    
    int[][] mat1 = 
        {
            {0,   1,   2,   3,   4 },
            {0,   5,   13,  2,   5,   2}, 
            {1,   58,  24,  32,  3,   24} ,
            {2,   2 ,  7,   33,  1,   7} ,
            {3,   45,  40,  37,  24,  70},
            {4,   47,  34,  12,  25,  2}, 
            {5,   52,  56,  68,  76,  100}
        };
    
    System.out.println(shortestPath(mat1)); // 16
}

public static int shortestPath(int[][] mat)
{
    return shortestPath(mat, 0, 0, mat[0][0] - 1, 0);
}

private static int shortestPath(int[][] mat, int row, int col, int prev, int counter)
{
    if (row < 0 || row == mat.length || col < 0 || col == mat[row].length) // boundaries
        return Integer.MAX_VALUE;

    if (mat[row][col] <= prev || mat[row][col] == -999) // if the sequence is not ascending or if we have been in this cell before
        return Integer.MAX_VALUE;

    if (row == mat.length - 1 && col == mat[row].length - 1)
        return counter + 1;

    int temp = mat[row][col];
    mat[row][col] = -999;

    int up    = shortestPath(mat, row - 1, col, temp, counter + 1); // go up and count
    int down  = shortestPath(mat, row + 1, col, temp, counter + 1);
    int left  = shortestPath(mat, row, col - 1, temp, counter + 1);
    int right = shortestPath(mat, row, col + 1, temp, counter + 1);

    mat[row][col] = temp;

    return Math.min(Math.min(up, down), Math.min(left, right)); // get the min
}

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM