简体   繁体   中英

Add Tensorflow pre-processing to existing Keras model (for use in Tensorflow Serving)

I would like to include my custom pre-processing logic in my exported Keras model for use in Tensorflow Serving.

My pre-processing performs string tokenization and uses an external dictionary to convert each token to an index for input to the Embedding layer:

from keras.preprocessing import sequence

token_to_idx_dict = ... #read from file

# Custom Pythonic pre-processing steps on input_data
tokens = [tokenize(s) for s in input_data]
token_idxs = [[token_to_idx_dict[t] for t in ts] for ts in tokens]
tokens_padded = sequence.pad_sequences(token_idxs, maxlen=maxlen)

Model architecture and training:

model = Sequential()
model.add(Embedding(max_features, 128, input_length=maxlen))
model.add(LSTM(128, activation='sigmoid'))
model.add(Dense(n_classes, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam')

model.fit(x_train, y_train)

Since the model will be used in Tensorflow Serving, I want to incorporate all pre-processing logic into the model itself (encoded in the exported model file).

Q: How can I do so using the Keras library only?

I found this guide explains how to combine Keras and Tensorflow. But I'm still unsure how to export everything as one model.

I know Tensorflow has built-in string splitting, file I/O , and dictionary lookup operations .

Pre-processing logic using Tensorflow operations:

# Get input text
input_string_tensor = tf.placeholder(tf.string, shape={1})
# Split input text by whitespace
splitted_string = tf.string_split(input_string_tensor, " ")
# Read index lookup dictionary
token_to_idx_dict = tf.contrib.lookup.HashTable(tf.contrib.lookup.TextFileInitializer("vocab.txt", tf.string, 0, tf.int64, 1, delimiter=","), -1)
# Convert tokens to indexes
token_idxs = token_to_idx_dict.lookup(splitted_string)
# Pad zeros to fixed length
token_idxs_padded = tf.pad(token_idxs, ...)

Q: How can I use these Tensorflow pre-defined pre-processing operations and my Keras layers together to both train and then export the model as a "black box" for use in Tensorflow Serving?

I figured it out, so I'm going to answer my own question here.

Here's the gist:

First, (in separate code file) I trained the model using Keras only with my own pre-processing functions, exported the Keras model weights file and my token-to-index dictionary.

Then, I copied just the Keras model architecture, set the input as the pre-processed tensor output, loaded the weights file from the previously trained Keras model, and sandwiched it between the Tensorflow pre-processing operations and the Tensorflow exporter.

Final product:

import tensorflow as tf
from keras import backend as K
from keras.models import Sequential, Embedding, LSTM, Dense
from tensorflow.contrib.session_bundle import exporter
from tensorflow.contrib.lookup import HashTable, TextFileInitializer

# Initialize Keras with Tensorflow session
sess = tf.Session()
K.set_session(sess)

# Token to index lookup dictionary
token_to_idx_path = '...'
token_to_idx_dict = HashTable(TextFileInitializer(token_to_idx_path, tf.string, 0, tf.int64, 1, delimiter='\t'), 0)

maxlen = ...

# Pre-processing sub-graph using Tensorflow operations
input = tf.placeholder(tf.string, name='input')
sparse_tokenized_input = tf.string_split(input)
tokenized_input = tf.sparse_tensor_to_dense(sparse_tokenized_input, default_value='')
token_idxs = token_to_idx_dict.lookup(tokenized_input)
token_idxs_padded = tf.pad(token_idxs, [[0,0],[0,maxlen]])
token_idxs_embedding = tf.slice(token_idxs_padded, [0,0], [-1,maxlen])

# Initialize Keras model
model = Sequential()
e = Embedding(max_features, 128, input_length=maxlen)
e.set_input(token_idxs_embedding)
model.add(e)
model.add(LSTM(128, activation='sigmoid'))
model.add(Dense(num_classes, activation='softmax'))

# Load weights from previously trained Keras model
weights_path = '...'
model.load_weights(weights_path)

K.set_learning_phase(0)

# Export model in Tensorflow format
# (Official tutorial: https://github.com/tensorflow/serving/blob/master/tensorflow_serving/g3doc/serving_basic.md)
saver = tf.train.Saver(sharded=True)
model_exporter = exporter.Exporter(saver)
signature = exporter.classification_signature(input_tensor=model.input, scores_tensor=model.output)
model_exporter.init(sess.graph.as_graph_def(), default_graph_signature=signature)
model_dir = '...'
model_version = 1
model_exporter.export(model_dir, tf.constant(model_version), sess)

# Input example
with sess.as_default():
    token_to_idx_dict.init.run()
    sess.run(model.output, feed_dict={input: ["this is a raw input example"]})

The accepted answer is super helpful, however it uses an outdated Keras API as @Qululu mentioned, and an outdated TF Serving API (Exporter), and it does not show how to export the model so that its input is the original tf placeholder (versus Keras model.input, which is post preprocessing). Following is a version that works well as of TF v1.4 and Keras 2.1.2:

sess = tf.Session()
K.set_session(sess)

K._LEARNING_PHASE = tf.constant(0)
K.set_learning_phase(0)

max_features = 5000
max_lens = 500

dict_table = tf.contrib.lookup.HashTable(tf.contrib.lookup.TextFileInitializer("vocab.txt",tf.string, 0, tf.int64, TextFileIndex.LINE_NUMBER, vocab_size=max_features, delimiter=" "), 0)

x_input = tf.placeholder(tf.string, name='x_input', shape=(None,))
sparse_tokenized_input = tf.string_split(x_input)
tokenized_input = tf.sparse_tensor_to_dense(sparse_tokenized_input, default_value='')
token_idxs = dict_table.lookup(tokenized_input)
token_idxs_padded = tf.pad(token_idxs, [[0,0],[0, max_lens]])
token_idxs_embedding = tf.slice(token_idxs_padded, [0,0], [-1, max_lens])

model = Sequential()
model.add(InputLayer(input_tensor=token_idxs_embedding, input_shape=(None, max_lens)))

 ...REST OF MODEL...

model.load_weights("model.h5")

x_info = tf.saved_model.utils.build_tensor_info(x_input)
y_info = tf.saved_model.utils.build_tensor_info(model.output)

prediction_signature = tf.saved_model.signature_def_utils.build_signature_def(inputs={"text": x_info}, outputs={"prediction":y_info}, method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)

builder = saved_model_builder.SavedModelBuilder("/path/to/model")

legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')

init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
sess.run(init_op)


# Add the meta_graph and the variables to the builder
builder.add_meta_graph_and_variables(
  sess, [tag_constants.SERVING],
  signature_def_map={
       signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
           prediction_signature,
  },
  legacy_init_op=legacy_init_op)

builder.save()  

UPDATE Doing pre-processing for inference with Tensorflow is a CPU op, and is not carried out efficiently if the model is deployed on a GPU server. The GPU stalls really bad, and the throughput is very low. Therefore, we ditched this for efficient pre-processing in the client process, instead.

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM