简体   繁体   中英

Weights update in Tensorflow embedding layer with pretrained fasttext weights

I'm not sure if my understanding is correct but...

While training a seq2seq model, one of the purpose I want to initiated a set of pre-trained fasttext weights in the embedding layers is to decrease the unknown words in the test environment (these unknown words are not in training set). Since pre-trained fasttext model has larger vocabulary, during test environment, the unknown word can be represented by fasttext out-of-vocabulary word vectors, which supposed to have similar direction of the semantic similar words in the training set.

However, due to the fact that the initial fasttext weights in the embedding layers will be updated through the training process (updating weights generates better results). I am wondering if the updated embedding weights would distort the relationship of semantic similarity between words and undermine the representation of fasttext out-of-vocabulary word vectors? (and, between those updated embedding weights and word vectors in the initial embedding layers but their corresponding ID didn't appear in the training data)

If the input ID can be distributed represented vectors extracted from pre-trained model and, then, map these pre-trained word vectors (fixed weights while training) via a lookup table to the embedding layers (these weights will be updated while training), would it be a better solution?

Any suggestions will be appreciated!

You are correct about the problem: when using pre-trained vector and fine-tuning them in your final model, the words that are infrequent or hasn't appear in your training set won't get any updates.

Now, usually one can test how much of the issue for your particular case this is. Eg if you have a validation set, try fine-tuning and not fine-tuning the weights and see what's the difference in model performance on validation set.

If you see a big difference in performance on validation set when you are not fine-tuning, here is a few ways to handle this:

a) Add a linear transformation layer after not-trainable embeddings. Fine-tuning embeddings in many cases does affine transformations to the space, so one can capture this in a separate layer that can be applied at test time.

Eg A is pre-trained embedding matrix:

embeds = tf.nn.embedding_lookup(A, tokens)
X = tf.get_variable("X", [embed_size, embed_size])
b = tf.get_vairable("b", [embed_size])
embeds = tf.mul(embeds, X) + b

b) Keep pre-trained embeddings in the not-trainable embedding matrix A. Add trainable embedding matrix B, that has a smaller vocab of popular words in your training set and embedding size. Lookup words both in A and B (and if word is out of vocab use ID=0 for example), concat results and use it input to your model. This way you will teach your model to use mostly A and sometimes rely on B for popular words in your training set.

fixed_embeds = tf.nn.embedding_lookup(A, tokens)
B = tf.get_variable("B", [smaller_vocab_size, embed_size])
oov_tokens = tf.where(tf.less(tokens, smaller_vocab_size), tokens, tf.zeros(tf.shape(tokens), dtype=tokens.dtype))
dyn_embeds = tf.nn.embedding_lookup(B, oov_tokens)
embeds = tf.concat([fixed_embeds, dyn_embeds], 1)

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM