简体   繁体   中英

Multiple performance metrics with stratified cross validation

I have a small, imbalanced dataset which I want to test with different algorithms. For evaluation purposes I need multiple performance metrics (accuracy, precision, recall, fscore, support).

Thats the way I plan to do it but I'm not really satisfied, since there might be a simpler solution:

skf = StratifiedKFold(n_splits=3, random_state=42, shuffle=True)
accuracy = []
for train_index, test_index in skf.split(X,Y):
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = Y[train_index], Y[test_index]
    gradientBoost.fit(X_train, y_train)
    y_pred = gradientBoost.predict(X_test)

    accuracy.append(round(accuracy_score(y_test, y_pred), 2))
    precision, recall, fscore, support = np.round(score(y_test, y_pred), 2)

    print('precision: ' + str(precision))
    print('recall: ' + str(recall))
    print('fscore: ' + str(fscore))
    print('support: ' + str(support))

    print(classification_report(y_test, y_pred))

meanAcc= np.mean(np.asarray(accuracy))
print('meanAcc: ', meanAcc)

In theory I could to the averaging for all metrics like I did for accuracy. Is there a simpler and/or more efficient approach?

EDIT:

I tried plotting accuracy and recall_weighted as scorers. Unfortunately only accuracy shows in the plot. In the legend accuracy + recall are mentioned.

#Initialize classifier
clf_gini = DecisionTreeClassifier(criterion = "gini", random_state = 42,
                               max_depth=10, min_samples_leaf=8)

scoring = {'Accuracy' : make_scorer(accuracy_score), 'Recall' : 'recall_weighted'}

gs = GridSearchCV(DecisionTreeClassifier(criterion= 'entropy', random_state=42, min_samples_leaf = 10), param_grid={'max_depth' : range(2, 30, 2)},
                  scoring=scoring, cv=3, refit='Accuracy')

gs.fit(X_Distances, Y)
results = gs.cv_results_

plt.figure(figsize=(13, 13))
plt.title("GridSearchCV evaluating using multiple scorers simultaneously",
          fontsize=16)

plt.xlabel("max_depth")
plt.ylabel("Score")
plt.grid()

ax = plt.axes()
ax.set_xlim(0, 32)
ax.set_ylim(0, 1)

# Get the regular numpy array from the MaskedArray
X_axis = np.array(results['param_max_depth'].data, dtype=float)

for scorer, color in zip(sorted(scoring), ['g', 'k']):
    for sample, style in (('train', '--'), ('test', '-')):
        sample_score_mean = results['mean_%s_%s' % (sample, scorer)]
        sample_score_std = results['std_%s_%s' % (sample, scorer)]
        ax.fill_between(X_axis, sample_score_mean - sample_score_std,
                        sample_score_mean + sample_score_std,
                        alpha=0.1 if sample == 'test' else 0, color=color)
        ax.plot(X_axis, sample_score_mean, style, color=color,
                alpha=1 if sample == 'test' else 0.7,
                label="%s (%s)" % (scorer, sample))

        best_index = np.nonzero(results['rank_test_%s' % scorer] == 1)[0][0]
        best_score = results['mean_test_%s' % scorer][best_index]

        # Plot a dotted vertical line at the best score for that scorer marked by x
        ax.plot([X_axis[best_index], ] * 2, [0, best_score],
                linestyle='-.', color=color, marker='x', markeredgewidth=3, ms=8)


    # Annotate the best score for that scorer
    ax.annotate("%0.2f" % best_score,
                (X_axis[best_index], best_score + 0.005))

plt.legend(loc="best")
plt.grid('off')
plt.show()

We can use GridSearchCV for multi-metric evaluation :

# Author: Raghav RV <rvraghav93@gmail.com>
# License: BSD
import numpy as np
from matplotlib import pyplot as plt

from sklearn.datasets import make_hastie_10_2
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import make_scorer
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier

Running GridSearchCV using multiple evaluation metrics¶

X, y = make_hastie_10_2(n_samples=8000, random_state=42)

# The scorers can be either be one of the predefined metric strings or a scorer
# callable, like the one returned by make_scorer
scoring = {'AUC': 'roc_auc', 'Accuracy': make_scorer(accuracy_score)}

# Setting refit='AUC', refits an estimator on the whole dataset with the
# parameter setting that has the best cross-validated AUC score.
# That estimator is made available at ``gs.best_estimator_`` along with
# parameters like ``gs.best_score_``, ``gs.best_parameters_`` and
# ``gs.best_index_``
gs = GridSearchCV(DecisionTreeClassifier(random_state=42),
                  param_grid={'min_samples_split': range(2, 403, 10)},
                  scoring=scoring, cv=5, refit='AUC')
gs.fit(X, y)
results = gs.cv_results_

Plotting the result

plt.figure(figsize=(13, 13))
plt.title("GridSearchCV evaluating using multiple scorers simultaneously",
          fontsize=16)

plt.xlabel("min_samples_split")
plt.ylabel("Score")
plt.grid()

ax = plt.axes()
ax.set_xlim(0, 402)
ax.set_ylim(0.73, 1)

# Get the regular numpy array from the MaskedArray
X_axis = np.array(results['param_min_samples_split'].data, dtype=float)

for scorer, color in zip(sorted(scoring), ['g', 'k']):
    for sample, style in (('train', '--'), ('test', '-')):
        sample_score_mean = results['mean_%s_%s' % (sample, scorer)]
        sample_score_std = results['std_%s_%s' % (sample, scorer)]
        ax.fill_between(X_axis, sample_score_mean - sample_score_std,
                        sample_score_mean + sample_score_std,
                        alpha=0.1 if sample == 'test' else 0, color=color)
        ax.plot(X_axis, sample_score_mean, style, color=color,
                alpha=1 if sample == 'test' else 0.7,
                label="%s (%s)" % (scorer, sample))

        best_index = np.nonzero(results['rank_test_%s' % scorer] == 1)[0][0]
        best_score = results['mean_test_%s' % scorer][best_index]

        # Plot a dotted vertical line at the best score for that scorer marked by x
        ax.plot([X_axis[best_index], ] * 2, [0, best_score],
                linestyle='-.', color=color, marker='x', markeredgewidth=3, ms=8)


    # Annotate the best score for that scorer
    ax.annotate("%0.2f" % best_score,
                (X_axis[best_index], best_score + 0.005))

plt.legend(loc="best")
plt.grid('off')
plt.show()

Result:

在此处输入图片说明

sklearn documentation proposes to use one of the following metrics for evaluating classifications:

  • accuracy metrics.accuracy_score
  • average_precision metrics.average_precision_score
  • f1 metrics.f1_score for binary targets
  • f1_micro metrics.f1_score micro-averaged
  • f1_macro metrics.f1_score macro-averaged
  • f1_weighted metrics.f1_score weighted average
  • f1_samples metrics.f1_score by multilabel sample
  • neg_log_loss metrics.log_loss requires predict_proba support
  • precision metrics.precision_score suffixes apply as with f1
  • recall metrics.recall_score suffixes apply as with f1
  • roc_auc metrics.roc_auc_score

lets try accuracy and f1_weighted :

from sklearn.model_selection import GridSearchCV
from sklearn.datasets import make_classification
from sklearn.metrics import recall_score, make_scorer, accuracy_score
from sklearn.ensemble import RandomForestClassifier


X, y = make_classification(n_classes=10, n_informative=8, random_state=1)

scoring = {
  'Accuracy' : 'accuracy',
  'F1 (macro)' : 'f1_weighted',
}

scoring = {
  'Accuracy' : 'accuracy',
  'Recall' : 'f1_weighted',
}

gs = GridSearchCV(RandomForestClassifier(max_depth=5, random_state=42, min_samples_leaf = 10),
                  param_grid={'n_estimators' : range(2, 101, 2)}, return_train_score=True,
                  scoring=scoring, cv=3, refit='Accuracy')

gs.fit(X, y)
results = gs.cv_results_

##################
plt.figure(figsize=(12, 8))
plt.title("GridSearchCV evaluating using multiple scorers simultaneously",
          fontsize=16)

plt.xlabel("n_estimators")
plt.ylabel("Score")
#plt.grid()

ax = plt.gca()
ax.set_xlim(0, 101)
ax.set_ylim(0, 1)

# Get the regular numpy array from the MaskedArray
X_axis = np.array(results['param_n_estimators'].data, dtype=float)

for scorer, color in zip(sorted(scoring), ['g', 'k']):
    for sample, style in (('train', '--'), ('test', '-')):
        print('plotting: {} ({})'.format(scorer, sample))
        sample_score_mean = results['mean_%s_%s' % (sample, scorer)]
        sample_score_std = results['std_%s_%s' % (sample, scorer)]
        ax.fill_between(X_axis, sample_score_mean - sample_score_std,
                        sample_score_mean + sample_score_std,
                        alpha=0.1 if sample == 'test' else 0, color=color)
        ax.plot(X_axis, sample_score_mean, style, color=color,
                alpha=1 if sample == 'test' else 0.7,
                label="%s (%s)" % (scorer, sample))

        best_index = np.nonzero(results['rank_test_%s' % scorer] == 1)[0][0]
        best_score = results['mean_test_%s' % scorer][best_index]

        # Plot a dotted vertical line at the best score for that scorer marked by x
        ax.plot([X_axis[best_index], ] * 2, [0, best_score],
                linestyle='-.', color=color, marker='x', markeredgewidth=3, ms=8)


    # Annotate the best score for that scorer
    ax.annotate("%0.2f" % best_score,
                (X_axis[best_index], best_score + 0.005))

plt.legend(loc="best")

plt.grid(False)
plt.show()

Result:

在此处输入图片说明

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM