简体   繁体   中英

How to detect multiple objects with OpenCV in C++?

I got inspiration from this answer here , which is a Python implementation, but I need C++ , that answer works very well, I got the thought is that: detectAndCompute to get keypoints , use kmeans to segment them to clusters, then for each cluster do matcher->knnMatch with each's descriptors , then do the other stuffs like the common single detecting method. The main problem is, how to provide descriptors for each cluster's matcher->knnMatch process? I thought we should set value of the other keypoints corresponding descriptor to 0(useless), am I right? And got some problems in my trying:

  1. how to estimate cluster count for kmeans ?
  2. Why can create Mat array for clusters like this Mat descriptors_scene_clusters[3] = { Mat(descriptors_scene.rows, descriptors_scene.cols, CV_8U, Scalar(0)) }; ?

Very appreciate any help, pls!


输出

#include <stdio.h>
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <opencv2/xfeatures2d.hpp>

using namespace cv;
using namespace cv::xfeatures2d;

#define MIN_MATCH_COUNT 10

int main()
{
    Mat img_object = imread("./2.PNG", IMREAD_GRAYSCALE);
    Mat img_scene = imread("./1.PNG", IMREAD_GRAYSCALE);

    Ptr<ORB> detector = ORB::create();
    std::vector<KeyPoint> keypoints_object, keypoints_scene;
    Mat descriptors_object, descriptors_scene;
    detector->detectAndCompute(img_object, cv::Mat(), keypoints_object, descriptors_object);
    detector->detectAndCompute(img_scene, cv::Mat(), keypoints_scene, descriptors_scene);


    std::cout << descriptors_scene.row(0) << "\n";
    std::cout << descriptors_scene.cols << "\n";


    std::vector<Point2f> keypoints_scene_points_;
    for (int i=0; i<keypoints_scene.size(); i++) {
        keypoints_scene_points_.push_back(keypoints_scene[i].pt);
    }
    Mat keypoints_scene_points(keypoints_scene_points_);

    Mat labels;
    int estimate_cluster_count = 3; // estimated ??????????
    kmeans(keypoints_scene_points, estimate_cluster_count, labels, TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 1.0), 3, KMEANS_RANDOM_CENTERS);

    std::cout << "==================================111111\n";

    Mat descriptors_scene_clusters[3] = { Mat(descriptors_scene.rows, descriptors_scene.cols, CV_8U, Scalar(0)) };

    std::cout << "==================================111111------\n";

    for (int i=0; i<labels.rows; i++) {
        int clusterIndex = labels.at<int>(i);
        Point2f pt = keypoints_scene_points.at<Point2f>(i);
        descriptors_scene_clusters[clusterIndex].at<uchar>(pt) = descriptors_scene.at<uchar>(pt);  // ?????? error
    }

    std::cout << descriptors_scene_clusters[0] << "\n";
    std::cout << "==================================22222222\n";
    // return 0;

    Mat img_matches = img_scene;
    std::vector<DMatch> all_good_matches;
    for (int i=0; i<estimate_cluster_count; i++) {
        std::cout << "==================================33333\n";

        Ptr<flann::IndexParams> indexParams = makePtr<flann::KDTreeIndexParams>(5);
        Ptr<flann::SearchParams> searchParams = makePtr<flann::SearchParams>(50);
        Ptr<FlannBasedMatcher> matcher = makePtr<FlannBasedMatcher>(indexParams, searchParams);
        // BFMatcher matcher;
        std::vector<std::vector<DMatch>> matches;

        std::cout << "==================================444444\n";
        matcher->knnMatch(descriptors_object, descriptors_scene_clusters[i], matches, 2);
        std::cout << "==================================555555\n";
        std::vector<DMatch> good_matches;

        for (auto &match : matches) {
            if (match[0].distance < 0.7 * match[1].distance) {
                good_matches.push_back(match[0]);
            }
        }

        all_good_matches.insert(all_good_matches.end(), good_matches.begin(), good_matches.end());

        std::cout << "==================================66666\n";

        if (good_matches.size() > MIN_MATCH_COUNT) {

            //-- Localize the object
            std::vector<Point2f> obj;
            std::vector<Point2f> scene;

            for (auto &match : good_matches) {
                //-- Get the keypoints from the good matches
                obj.push_back(keypoints_object[match.queryIdx].pt);
                scene.push_back(keypoints_scene[match.trainIdx].pt);
            }

            Mat H = findHomography(obj, scene, RANSAC);

            //-- Get the corners from the image_1 ( the object to be "detected" )
            std::vector<Point2f> obj_corners(4);
            obj_corners[0] = cvPoint(0, 0);
            obj_corners[1] = cvPoint(img_object.cols, 0);
            obj_corners[2] = cvPoint(img_object.cols, img_object.rows);
            obj_corners[3] = cvPoint(0, img_object.rows);
            std::vector<Point2f> scene_corners(4);

            perspectiveTransform(obj_corners, scene_corners, H);

            //-- Draw lines between the corners (the mapped object in the scene - image_2 )
            line(img_matches, scene_corners[0] + Point2f(img_object.cols, 0),
                 scene_corners[1] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
            line(img_matches, scene_corners[1] + Point2f(img_object.cols, 0),
                 scene_corners[2] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
            line(img_matches, scene_corners[2] + Point2f(img_object.cols, 0),
                 scene_corners[3] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
            line(img_matches, scene_corners[3] + Point2f(img_object.cols, 0),
                 scene_corners[0] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);

            print(scene_corners);
        }
    }

    drawMatches(img_object, keypoints_object, img_scene, keypoints_scene,
                    all_good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
                    std::vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);


    //-- Show detected matches
    imshow("Good Matches & Object detection", img_matches);

    waitKey(0);
    return 0;
}

I don't know a solution to your problem, but the following might help answer the questions you've asked.

In the comments it says that you might need an implementation of meanshift , which opencv already has. Here an example, here the documentation with a tutorial.

  1. The clusterCount for kmeans is the number of clusters you want to create link . I don't know how to estimate the number you want to create, but I guess you could know.

  2. You initialize descriptors_scene_clusters only with one element:

Mat descriptors_scene_clusters[3] = { Mat(descriptors_scene.rows, descriptors_scene.cols, CV_8U, Scalar(0)) };

And when you iterate over it:

for (int i=0; i<labels.rows; i++) {
    int clusterIndex = labels.at<int>(i);
    Point2f pt = keypoints_scene_points.at<Point2f>(i);
    descriptors_scene_clusters[clusterIndex].at<uchar>(pt) = descriptors_scene.at<uchar>(pt);  // ?????? error
}

clusterIndex is 2 and you access an uninitialized element in the array, which results in the EXEC_BAD_ACCESS error .

I hope this helps for further investigation!

You can use a simple clusterer to either directly compute the clusters, find the number of clusters and / or the cluster centers initialization for kmeans. Here below a possible implementation of an agglomerative clusterer, which groups together points closer to a specified distance - see parameter dist in constructor. In your case dist can be the biggest distance between keypoints in the small image.

Header file:

class PointsClusterer {
public:
     PointsClusterer (int dist, std::vector <cv::Point2f> points);
     bool cluster();
     std::map <int, std::vector <cv::Point2f>> getClusters ();

private:

    double distance (int i, int j);
    void merge (int i, int j);

private:

    std::vector <cv::Point2f> m_Points;
    std::map <int, std::vector <int>> m_Clusters;
    std::map <int, cv::Point2f> m_Sums;
    int m_dist = 0;
};

Cpp file:

PointsClusterer::PointsClusterer (int dist, std::vector <cv::Point2f> points) :
m_dist(dist), m_Points (points)
{}

bool PointsClusterer::cluster()
{
//initialization
    for (int i = 0; i < m_Points.size(); ++i)
    {
        clusters[i] = std::vector<int>(1, i);
        sum_clusters[i] = m_Points[i];
    }

    bool still_merge = true;
    //Merge clusters
    while (still_merge)
    {
        still_merge = false;
        bool break_i = false;

        for (int i=0; i < m_Clusters.size () && !break_i ;++i)
        for (int j=i+1; j < m_Clusters.size ();++j)
        {
            if (distance(i, j) < m_dist)
            {
                merge(i, j);
                break_i = true;
                still_merge = true;
                break;
            }
        }
    }
//final conversion to std::map <int, std::vector <cv::Point2f>> is missing

}


void PointsClusterer::merge(int i, int j)
{
    auto it = m_Clusters.begin();
    auto iti = it+i;
    auto itj = it+j;

    for (val : itj->second)
    {
         iti->second.push_back(val);
         m_Sums[iti->first]+=m_Points[val];
    }
    m_Clusters.erase(itj);
}

double PointsClusterer::distance(int i, int j)
{
    auto it = m_Clusters.begin();
    auto iti = it + i;
    auto itj = it + j;
    auto vali = m_Sums[iti->first] / iti->second.size();
    auto valj = m_Sums[itj->first] / itj->second.size();
    return cv::norm(vali - valj);
}

The implementation of the cluster method was oversimplified such that it is obvious how it works. Its performance can be improved, but I believe that is beyond the scope of your question.

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM