简体   繁体   中英

How to make recursion using only lambdas in Racket?

I need some help trying to figure out how to make the code below recursive using only lambdas.

(define (mklist2 bind pure args)
  (define (helper bnd pr ttl lst)
    (cond [(empty? lst) (pure ttl)]
          [else (define (func t) (helper bnd pr (append ttl (list t)) (rest lst)))
           (bind (first lst) func)])
    )
  (helper bind pure empty args))

Given a sample fact orial program -

(define fact
  (lambda (n)
    (if (= n 0)
        1
        (* n (fact (- n 1)))))) ;; goal: remove reference to `fact`

(print (fact 7)) ; 5040

Above fact is (lambda (n)...) and when we call fact we are asking for this lambda so we can reapply it with new arguments. lambda are nameless and if we cannot use top-level define bindings, the only way to bind a variable is using a lambda's parameter . Imagine something like -

(lambda (r)
  ; ...lambda body...
  ; call (r ...) to recur this lambda
)

We just need something to make our (lambda (r)...) behave this way -

(something (lambda (r)
  (print 1)
  (r)))

; 1
; 1
; 1
; ... forever

introducing U

This something is quite close to the U combinator -

(define u
  (lambda (f) (f f)))

(define fact
  (lambda (r)     ;; wrap in (lambda (r) ...)
    (lambda (n)
      (if (= n 0)
          1
          (* n ((r r) (- n 1))))))) ;; replace fact with (r r)

(print ((u fact) 7))

; => 5040

And now that recursion is happening thru use of a parameter, we could effectively remove all define bindings and write it using only lambda -

; ((u fact) 7)
(print (((lambda (f) (f f))  ; u
         (lambda (r)         ; fact
           (lambda (n)
             (if (= n 0)
                 1
                 (* n ((r r) (- n 1)))))))
        7))

; => 5040

Why U when you can Y?

The U-combinator is simple but having to call ((rr)...) inside the function is cumbersome. It'd be nice if you could call (r...) to recur directly. This is exactly what the Y-combinator does -

(define y
  (lambda (f)
    (f (lambda (x) ((y f) x))))) ;; pass (y f) to user lambda

(define fact
  (lambda (recur)
    (lambda (n)
      (if (= n 0)
          1
          (* n (recur (- n 1))))))) ;; recur directly

(print ((y fact) 7))

; => 5040

But see how y has a by-name recursive definition? We can use u to remove the by-name reference and recur using a lambda parameter instead. The same as we did above -

(define u
  (lambda (f) (f f)))

(define y
  (lambda (r)      ;; wrap in (lambda (r) ...)
    (lambda (f)
      (f (lambda (x) (((r r) f) x)))))) ;; replace y with (r r)

(define fact
  (lambda (recur)
    (lambda (n)
      (if (= n 0)
          1
          (* n (recur (- n 1)))))))

(print (((u y) fact) 7)) ;; replace y with (u y)

; => 5040

We can write it now using only lambda -

; (((u y) fact) 7)
(print ((((lambda (f) (f f))   ; u
          (lambda (r)          ; y
            (lambda (f)
              (f (lambda (x) (((r r) f) x))))))
         (lambda (recur)       ; fact
           (lambda (n)
             (if (= n 0)
                 1
                 (* n (recur (- n 1)))))))
        7))

; => 5040

need more parameters?

By using currying, we can expand our functions to support more parameters, if needed -

(define range
  (lambda (r)
    (lambda (start)
      (lambda (end)
        (if (> start end)
            null
            (cons start ((r (add1 start)) end)))))))

(define map
  (lambda (r)
    (lambda (f)
      (lambda (l)
        (if (null? l)
            null
            (cons (f (car l))
                  ((r f) (cdr l))))))))

(define nums
  ((((u y) range) 3) 9))

(define squares
  ((((u y) map) (lambda (x) (* x x))) nums))

(print squares)
; '(9 16 25 36 49 64 81)

And as a single lambda expression -

; ((((u y) map) (lambda (x) (* x x))) ((((u y) range) 3) 9))
(print (((((lambda (f) (f f)) ; u
           (lambda (r)        ; y
             (lambda (f)
               (f (lambda (x) (((r r) f) x))))))
          (lambda (r)         ; map
            (lambda (f)
              (lambda (l)
                (if (null? l)
                    null
                    (cons (f (car l))
                          ((r f) (cdr l))))))))
         (lambda (x) (* x x))) ; square
        (((((lambda (f) (f f)) ; u
            (lambda (r)        ; y
              (lambda (f)
                (f (lambda (x) (((r r) f) x))))))
           (lambda (r)         ; range
             (lambda (start)
               (lambda (end)
                 (if (> start end)
                     null
                     (cons start ((r (add1 start)) end)))))))
          3)   ; start
         9)))  ; end

; => '(9 16 25 36 49 64 81)

lazY

Check out these cool implementations of y using lazy

#lang lazy

(define y
  (lambda (f)
    (f (y f))))
#lang lazy

(define y
  ((lambda (f) (f f)) ; u
   (lambda (r)
     (lambda (f)
       (f ((r r) f))))))
#lang lazy

(define y
  ((lambda (r)
    (lambda (f)
      (f ((r r) f))))
  (lambda (r)
    (lambda (f)
      (f ((r r) f))))))

In response to @alinsoar's answer, I just wanted to show that Typed Racket's type system can express the Y combinator, if you put the proper type annotations using Rec types.

The U combinator requires a Rec type for its argument:

(: u (All (a) (-> (Rec F (-> F a)) a)))
(define u
  (lambda (f) (f f)))

The Y combinator itself doesn't need a Rec in its type:

(: y (All (a b) (-> (-> (-> a b) (-> a b)) (-> a b))))

However, the definition of the Y combinator requires a Rec type annotation on one of the functions used within it:

(: y (All (a b) (-> (-> (-> a b) (-> a b)) (-> a b))))
(define y
  (lambda (f)
    (u (lambda ([g : (Rec G (-> G (-> a b)))])
         (f (lambda (x) ((g g) x)))))))

Recursion using only lambdas can be done using fixed point combinators , the simplest one being Ω .

However, take into account that such a combinator has a type of infinite length, so if you program with types, the type is recursive and has infinite length. Not every type checker is able to compute the type for recursive types. The type checker of Racket I think it's Hindley-Miller and I remember typed racket it's not able to run fixed point combinators, but not sure. You have to disable the type checker for this to work.

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM