简体   繁体   中英

C++11 constexpr function's argument passed in template argument

This used to work some weeks ago:

template <typename T, T t>
T            tfunc()
{
    return t + 10;
}

template <typename T>
constexpr T       func(T t)
{
    return tfunc<T, t>();
}

int main()
{
    std::cout << func(10) << std::endl;
    return 0;
}

But now g++ -std=c++0x says:

main.cpp: In function ‘constexpr T func(T) [with T = int]’:
main.cpp:29:25:   instantiated from here
main.cpp:24:24: error: no matching function for call to ‘tfunc()’
main.cpp:24:24: note: candidate is:
main.cpp:16:14: note: template<class T, T t> T tfunc()
main.cpp:25:1: warning: control reaches end of non-void function [-Wreturn-type]

clang++ -std=c++11 says that template's parameters of tfunc<T, t>() are ignored because invalid.

Is that a bug, or a fix ?

PS:

g++ --version => g++ (GCC) 4.6.2 20120120 (prerelease)

clang++ --version => clang version 3.0 (tags/RELEASE_30/final) (3.0.1)

The parameter t is not a constant expression. Hence the error. It should be also noted that it cannot be a constant expression.

You can pass the constant expression as argument, but inside the function, the object (the parameter) which holds the value, is not a constant expression.

Since t is not a constant expression, it cannot be used as template argument:

return tfunc<T, t>(); //the second argument must be a constant expression

Maybe, you want something like this:

template <typename T, T t>
T  tfunc()
{
    return t + 10;
}

template <typename T, T t>  //<---- t became template argument!
constexpr T  func()
{
    return tfunc<T, t>();
}

#define FUNC(a)  func<decltype(a),a>()

int main()
{
    std::cout << FUNC(10) << std::endl;
}

Now it should work : online demo

I get the feeling that constexpr must also be valid in a 'runtime' context, not just at compile-time. Marking a function as constexpr encourages the compiler to try to evaluate it at compile-time, but the function must still have a valid run-time implementation.

In practice, this means that the compiler doesn't know how to implement this function at runtime:

template <typename T>
constexpr T       func(T t)
{
    return tfunc<T, t>();
}

A workaround is to change the constructor such that it takes its t parameter as a normal parameter, not as a template parameter, and mark the constructor as constexpr :

template <typename T>
constexpr T       tfunc(T t)
{
    return t + 10;
}
template <typename T>
constexpr T       func(T t)
{
    return tfunc<T>(t);
}

There are three levels of 'constant-expression-ness':

  1. template int parameter, or (non-VLA) array size // Something that must be a constant-expression
  2. constexpr // Something that may be a constant-expression
  3. non-constant-expression

You can't really convert items that are low in that list into something that is high in that list, but obviously the other route it possible.

For example, a call to this function

constexpr int foo(int x) { return x+1; }

isn't necessarily a constant-expression.

// g++-4.6 used in these few lines. ideone doesn't like this code. I don't know why
int array[foo(3)]; // this is OK
int c = getchar();
int array[foo(c)]; // this will not compile (without VLAs)

So the return value from a constexpr function is a constant expression only if all the parameters, and the implementation of the function, can be completed at executed at compile-time.

Recap the question: You have two functions which take a parameter of type T . One takes its parameter as a template parameter, and the other as a 'normal' parameter. I'm going to call the two functions funcT and funcN instead of tfunc and func . You wish to be able to call funcT from funcN . Marking the latter as a constexpr doesn't help.

Any function marked as constexpr must be compilable as if the constexpr wasn't there. constexpr functions are a little schizophrenic. They only graduate to full constant-expressions in certain circumstances.

It would not be possible to implement funcN to run at runtime in a simple way, as it would need to be able to work for all possible values of t . This would require the compiler to instantiate many instances of tfunc , one for each value of t. But you can work around this if you're willing to live with a small subset of T. There is a template-recursion limit of 1024 in g++, so you can easily handle 1024 values of T with this code:

#include<iostream>
#include<functional>
#include<array>
using namespace std;

template <typename T, T t>
constexpr T funcT() {
        return t + 10;
}

template<typename T, T u>
constexpr T worker (T t) {
        return t==0 ? funcT<T,u>() : worker<T, u+1>(t-1);

}
template<>
constexpr int worker<int,1000> (int ) {
            return -1;
}


template <typename T>
constexpr T       funcN(T t)
{
        return t<1000 ? worker<T,0>(t) : -1;
}

int main()
{
    std::cout << funcN(10) << std::endl;
    array<int, funcN(10)> a; // to verify that funcN(10) returns a constant-expression
    return 0;
}

It uses a function worker which will recursively convert the 'normal' parameter t into a template parameter u , which it then uses to instantiate and execute tfunc<T,u> .

The crucial line is return funcT<T,u>() : worker<T, u+1>(t-1);

This has limitations. If you want to use long , or other integral types, you'll have to add another specialization. Obviously, this code only works for t between 0 and 1000 - the exact upper limit is probably compiler-dependent. Another option might be to use a binary search of sorts, with a different worker function for each power of 2:

template<typename T, T u>
constexpr T worker4096 (T t) {
        return t>=4096 ? worker2048<T, u+4096>(t-4096) : worker2048<T, u>(t);

}

I think this will work around the template-recursion-limit, but it will still require a very large number of instantiations and would make compilation very slow, if it works at all.

Looks like it should give an error - it has no way of knowing that you passed in a constant value as t to func.

More generally, you can't use runtime values as template arguments. Templates are inherently a compile-time construct.

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM