简体   繁体   中英

How to round to at most 2 decimal places, if necessary

I'd like to round at most two decimal places, but only if necessary .

Input:

10
1.7777777
9.1

Output:

10
1.78
9.1

How can I do this in JavaScript?

Use Math.round() :

Math.round(num * 100) / 100

Or to be more specific and to ensure things like 1.005 round correctly, use Number.EPSILON :

Math.round((num + Number.EPSILON) * 100) / 100

If the value is a text type:

parseFloat("123.456").toFixed(2);

If the value is a number:

var numb = 123.23454;
numb = numb.toFixed(2);

There is a downside that values like 1.5 will give "1.50" as the output. A fix suggested by @minitech:

var numb = 1.5;
numb = +numb.toFixed(2);
// Note the plus sign that drops any "extra" zeroes at the end.
// It changes the result (which is a string) into a number again (think "0 + foo"),
// which means that it uses only as many digits as necessary.

It seems like Math.round is a better solution. But it is not! In some cases it will not round correctly:

Math.round(1.005 * 100)/100 // Returns 1 instead of expected 1.01!

toFixed() will also not round correctly in some cases (tested in Chrome v.55.0.2883.87)!

Examples:

parseFloat("1.555").toFixed(2); // Returns 1.55 instead of 1.56.
parseFloat("1.5550").toFixed(2); // Returns 1.55 instead of 1.56.
// However, it will return correct result if you round 1.5551.
parseFloat("1.5551").toFixed(2); // Returns 1.56 as expected.

1.3555.toFixed(3) // Returns 1.355 instead of expected 1.356.
// However, it will return correct result if you round 1.35551.
1.35551.toFixed(2); // Returns 1.36 as expected.

I guess, this is because 1.555 is actually something like float 1.55499994 behind the scenes.

Solution 1 is to use a script with required rounding algorithm, for example:

function roundNumber(num, scale) {
  if(!("" + num).includes("e")) {
    return +(Math.round(num + "e+" + scale)  + "e-" + scale);
  } else {
    var arr = ("" + num).split("e");
    var sig = ""
    if(+arr[1] + scale > 0) {
      sig = "+";
    }
    return +(Math.round(+arr[0] + "e" + sig + (+arr[1] + scale)) + "e-" + scale);
  }
}

It is also at Plunker .

Note: This is not a universal solution for everyone. There are several different rounding algorithms. Your implementation can be different, and it depends on your requirements. See also Rounding .

Solution 2 is to avoid front end calculations and pull rounded values from the backend server.

Another possible solution, which is not a bulletproof either.

Math.round((num + Number.EPSILON) * 100) / 100

In some cases, when you round a number like 1.3549999999999998, it will return an incorrect result. It should be 1.35, but the result is 1.36.

You can use

function roundToTwo(num) {
    return +(Math.round(num + "e+2")  + "e-2");
}

I found this on MDN . Their way avoids the problem with 1.005 that was mentioned .

roundToTwo(1.005)
1.01
roundToTwo(10)
10
roundToTwo(1.7777777)
1.78
roundToTwo(9.1)
9.1
roundToTwo(1234.5678)
1234.57

MarkG's answer is the correct one. Here's a generic extension for any number of decimal places.

Number.prototype.round = function(places) {
  return +(Math.round(this + "e+" + places)  + "e-" + places);
}

Usage:

var n = 1.7777;    
n.round(2); // 1.78

Unit test:

it.only('should round floats to 2 places', function() {
    
  var cases = [
    { n: 10,      e: 10,    p:2 },
    { n: 1.7777,  e: 1.78,  p:2 },
    { n: 1.005,   e: 1.01,  p:2 },
    { n: 1.005,   e: 1,     p:0 },
    { n: 1.77777, e: 1.8,   p:1 }
  ]
    
  cases.forEach(function(testCase) {
    var r = testCase.n.round(testCase.p);
    assert.equal(r, testCase.e, 'didn\'t get right number');
  });
})

You should use:

Math.round( num * 100 + Number.EPSILON ) / 100

No one seems to be aware of Number.EPSILON .

Also it's worth noting that this is not a JavaScript weirdness like some people stated.

That is simply the way floating point numbers works in a computer. Like 99% of programming languages, JavaScript doesn't have home made floating point numbers; it relies on the CPU/FPU for that. A computer uses binary, and in binary, there isn't any numbers like 0.1 , but a mere binary approximation for that. Why? For the same reason than 1/3 cannot be written in decimal: its value is 0.33333333... with an infinity of threes.

Here come Number.EPSILON . That number is the difference between 1 and the next number existing in the double precision floating point numbers. That's it: There is no number between 1 and 1 + Number.EPSILON .

EDIT:

As asked in the comments, let's clarify one thing: adding Number.EPSILON is relevant only when the value to round is the result of an arithmetic operation, as it can swallow some floating point error delta.

It's not useful when the value comes from a direct source (eg: literal, user input or sensor).

EDIT (2019):

Like @maganap and some peoples have pointed out, it's best to add Number.EPSILON before multiplying:

Math.round( ( num + Number.EPSILON ) * 100 ) / 100

EDIT (december 2019):

Lately, I use a function similar to this one for comparing numbers epsilon-aware:

const ESPILON_RATE = 1 + Number.EPSILON ;
const ESPILON_ZERO = Number.MIN_VALUE ;

function epsilonEquals( a , b ) {
  if ( Number.isNaN( a ) || Number.isNaN( b ) ) {
    return false ;
  }
  if ( a === 0 || b === 0 ) {
    return a <= b + EPSILON_ZERO && b <= a + EPSILON_ZERO ;
  }
  return a <= b * EPSILON_RATE && b <= a * EPSILON_RATE ;
}

My use-case is an assertion + data validation lib I'm developing for many years.

In fact, in the code I'm using ESPILON_RATE = 1 + 4 * Number.EPSILON and EPSILON_ZERO = 4 * Number.MIN_VALUE (four times the epsilon), because I want an equality checker loose enough for cumulating floating point error.

So far, it looks perfect for me. I hope it will help.

In general, decimal rounding is done by scaling: round(num * p) / p

Naive implementation

Using the following function with halfway numbers, you will get either the upper rounded value as expected, or the lower rounded value sometimes depending on the input.

This inconsistency in rounding may introduce hard to detect bugs in the client code.

 function naiveRound(num, decimalPlaces = 0) { var p = Math.pow(10, decimalPlaces); return Math.round(num * p) / p; } console.log( naiveRound(1.245, 2) ); // 1.25 correct (rounded as expected) console.log( naiveRound(1.255, 2) ); // 1.25 incorrect (should be 1.26) // testing edge cases console.log( naiveRound(1.005, 2) ); // 1 incorrect (should be 1.01) console.log( naiveRound(2.175, 2) ); // 2.17 incorrect (should be 2.18) console.log( naiveRound(5.015, 2) ); // 5.01 incorrect (should be 5.02)

In order to determine whether a rounding operation involves a midpoint value, the Round function multiplies the original value to be rounded by 10 ** n, where n is the desired number of fractional digits in the return value, and then determines whether the remaining fractional portion of the value is greater than or equal to .5. This "Exact Testing for Equality" with floating-point values are problematic because of the floating-point format's issues with binary representation and precision. This means that any fractional portion of a number that is slightly less than .5 (because of a loss of precision) will not be rounded upward.

In the previous example, 5.015 is a midpoint value if it is to be rounded to two decimal places, the value of 5.015 * 100 is actually 501.49999999999994 . Because .49999999999994 is less than .5, it is rounded down to 501 and finally the result is 5.01.

Better implementations

Exponential notation

By converting the number to a string in the exponential notation, positive numbers are rounded as expected. But, be aware that negative numbers round differently than positive numbers.

In fact, it performs what is basically equivalent to "round half up" as the rule, you will see that round(-1.005, 2) evaluates to -1 even though round(1.005, 2) evaluates to 1.01 . The lodash _.round method uses this technique.

 /** * Round half up ('round half towards positive infinity') * Negative numbers round differently than positive numbers. */ function round(num, decimalPlaces = 0) { num = Math.round(num + "e" + decimalPlaces); return Number(num + "e" + -decimalPlaces); } // test rounding of half console.log( round(0.5) ); // 1 console.log( round(-0.5) ); // 0 // testing edge cases console.log( round(1.005, 2) ); // 1.01 console.log( round(2.175, 2) ); // 2.18 console.log( round(5.015, 2) ); // 5.02 console.log( round(-1.005, 2) ); // -1 console.log( round(-2.175, 2) ); // -2.17 console.log( round(-5.015, 2) ); // -5.01

If you want the usual behavior when rounding negative numbers, you would need to convert negative numbers to positive before calling Math.round() , and then convert them back to negative numbers before returning.

// Round half away from zero
function round(num, decimalPlaces = 0) {
    if (num < 0)
        return -round(-num, decimalPlaces);

    num = Math.round(num + "e" + decimalPlaces);
    return Number(num + "e" + -decimalPlaces);
}

Approximate rounding

To correct the rounding problem shown in the previous naiveRound example, we can define a custom rounding function that performs a "nearly equal" test to determine whether a fractional value is sufficiently close to a midpoint value to be subject to midpoint rounding.

 // round half away from zero function round(num, decimalPlaces = 0) { if (num < 0) return -round(-num, decimalPlaces); var p = Math.pow(10, decimalPlaces); var n = num * p; var f = n - Math.floor(n); var e = Number.EPSILON * n; // Determine whether this fraction is a midpoint value. return (f >= .5 - e) ? Math.ceil(n) / p : Math.floor(n) / p; } // test rounding of half console.log( round(0.5) ); // 1 console.log( round(-0.5) ); // -1 // testing edge cases console.log( round(1.005, 2) ); // 1.01 console.log( round(2.175, 2) ); // 2.18 console.log( round(5.015, 2) ); // 5.02 console.log( round(-1.005, 2) ); // -1.01 console.log( round(-2.175, 2) ); // -2.18 console.log( round(-5.015, 2) ); // -5.02

Number.EPSILON

There is a different purely mathematical technique to perform round-to-nearest (using"round half away from zero" ), in which epsilon correction is applied before calling the rounding function.

Simply, we add the smallest possible float value (= 1.0 ulp; unit in the last place) to the product before rounding. This moves to the next representable float value, away from zero, thus it will offset the binary round-off error that may occur during the multiplication by 10 ** n .

 /** * Round half away from zero ('commercial' rounding) * Uses correction to offset floating-point inaccuracies. * Works symmetrically for positive and negative numbers. */ function round(num, decimalPlaces = 0) { var p = Math.pow(10, decimalPlaces); var n = (num * p) * (1 + Number.EPSILON); return Math.round(n) / p; } // rounding of half console.log( round(0.5) ); // 1 console.log( round(-0.5) ); // -1 // testing edge cases console.log( round(1.005, 2) ); // 1.01 console.log( round(2.175, 2) ); // 2.18 console.log( round(5.015, 2) ); // 5.02 console.log( round(-1.005, 2) ); // -1.01 console.log( round(-2.175, 2) ); // -2.18 console.log( round(-5.015, 2) ); // -5.02

After adding 1 ulp, the value of 5.015 * 100 which is 501.49999999999994 will be corrected to 501.50000000000006 , this will rounded up to 502 and finally the result is 5.02.

Note that the size of a unit in last place ("ulp") is determined by (1) the magnitude of the number and (2) the relative machine epsilon (2^-52). Ulps are relatively larger at numbers with bigger magnitudes than they are at numbers with smaller magnitudes.

Double rounding

Here, we use the toPrecision() method to strip the floating-point round-off errors in the intermediate calculations. Simply, we round to 15 significant figures to strip the round-off error at the 16th significant digit. This technique to preround the result to significant digits is also used by PHP 7 round function.

The value of 5.015 * 100 which is 501.49999999999994 will be rounded first to 15 significant digits as 501.500000000000 , then it will rounded up again to 502 and finally the result is 5.02.

 // Round half away from zero function round(num, decimalPlaces = 0) { if (num < 0) return -round(-num, decimalPlaces); var p = Math.pow(10, decimalPlaces); var n = (num * p).toPrecision(15); return Math.round(n) / p; } // rounding of half console.log( round(0.5) ); // 1 console.log( round(-0.5) ); // -1 // testing edge cases console.log( round(1.005, 2) ); // 1.01 console.log( round(2.175, 2) ); // 2.18 console.log( round(5.015, 2) ); // 5.02 console.log( round(-1.005, 2) ); // -1.01 console.log( round(-2.175, 2) ); // -2.18 console.log( round(-5.015, 2) ); // -5.02

Arbitrary-precision JavaScript library - decimal.js

 // Round half away from zero function round(num, decimalPlaces = 0) { return new Decimal(num).toDecimalPlaces(decimalPlaces).toNumber(); } // rounding of half console.log( round(0.5) ); // 1 console.log( round(-0.5) ); // -1 // testing edge cases console.log( round(1.005, 2) ); // 1.01 console.log( round(2.175, 2) ); // 2.18 console.log( round(5.015, 2) ); // 5.02 console.log( round(-1.005, 2) ); // -1.01 console.log( round(-2.175, 2) ); // -2.18 console.log( round(-5.015, 2) ); // -5.02
 <script src="https://cdnjs.cloudflare.com/ajax/libs/decimal.js/10.2.1/decimal.js" integrity="sha512-GKse2KVGCCMVBn4riigHjXE8j5hCxYLPXDw8AvcjUtrt+a9TbZFtIKGdArXwYOlZvdmkhQLWQ46ZE3Q1RIa7uQ==" crossorigin="anonymous"></script>

Solution 1: string in exponential notation

Inspired by the solution provided by KFish here: https://stackoverflow.com/a/55521592/4208440

A simple drop in solution that provides accurate decimal rounding, flooring, and ceiling to a specific number of decimal places without adding a whole library. It treats floats more like decimals by fixing the binary rounding issues to avoid unexpected results: for example, floor((0.1+0.7)*10) will return the expected result 8.

Numbers are rounded to a specific number of fractional digits. Specifying a negative precision will round to any number of places to the left of the decimal point.

 // Solution 1 var DecimalPrecision = (function() { if (Math.trunc === undefined) { Math.trunc = function(v) { return v < 0 ? Math.ceil(v) : Math.floor(v); }; } var decimalAdjust = function myself(type, num, decimalPlaces) { if (type === 'round' && num < 0) return -myself(type, -num, decimalPlaces); var shift = function(value, exponent) { value = (value + 'e').split('e'); return +(value[0] + 'e' + (+value[1] + (exponent || 0))); }; var n = shift(num, +decimalPlaces); return shift(Math[type](n), -decimalPlaces); }; return { // Decimal round (half away from zero) round: function(num, decimalPlaces) { return decimalAdjust('round', num, decimalPlaces); }, // Decimal ceil ceil: function(num, decimalPlaces) { return decimalAdjust('ceil', num, decimalPlaces); }, // Decimal floor floor: function(num, decimalPlaces) { return decimalAdjust('floor', num, decimalPlaces); }, // Decimal trunc trunc: function(num, decimalPlaces) { return decimalAdjust('trunc', num, decimalPlaces); }, // Format using fixed-point notation toFixed: function(num, decimalPlaces) { return decimalAdjust('round', num, decimalPlaces).toFixed(decimalPlaces); } }; })(); // test rounding of half console.log(DecimalPrecision.round(0.5)); // 1 console.log(DecimalPrecision.round(-0.5)); // -1 // testing very small numbers console.log(DecimalPrecision.ceil(1e-8, 2) === 0.01); console.log(DecimalPrecision.floor(1e-8, 2) === 0); // testing simple cases console.log(DecimalPrecision.round(5.12, 1) === 5.1); console.log(DecimalPrecision.round(-5.12, 1) === -5.1); console.log(DecimalPrecision.ceil(5.12, 1) === 5.2); console.log(DecimalPrecision.ceil(-5.12, 1) === -5.1); console.log(DecimalPrecision.floor(5.12, 1) === 5.1); console.log(DecimalPrecision.floor(-5.12, 1) === -5.2); console.log(DecimalPrecision.trunc(5.12, 1) === 5.1); console.log(DecimalPrecision.trunc(-5.12, 1) === -5.1); // testing edge cases for round console.log(DecimalPrecision.round(1.005, 2) === 1.01); console.log(DecimalPrecision.round(39.425, 2) === 39.43); console.log(DecimalPrecision.round(-1.005, 2) === -1.01); console.log(DecimalPrecision.round(-39.425, 2) === -39.43); // testing edge cases for ceil console.log(DecimalPrecision.ceil(9.13, 2) === 9.13); console.log(DecimalPrecision.ceil(65.18, 2) === 65.18); console.log(DecimalPrecision.ceil(-2.26, 2) === -2.26); console.log(DecimalPrecision.ceil(-18.15, 2) === -18.15); // testing edge cases for floor console.log(DecimalPrecision.floor(2.26, 2) === 2.26); console.log(DecimalPrecision.floor(18.15, 2) === 18.15); console.log(DecimalPrecision.floor(-9.13, 2) === -9.13); console.log(DecimalPrecision.floor(-65.18, 2) === -65.18); // testing edge cases for trunc console.log(DecimalPrecision.trunc(2.26, 2) === 2.26); console.log(DecimalPrecision.trunc(18.15, 2) === 18.15); console.log(DecimalPrecision.trunc(-2.26, 2) === -2.26); console.log(DecimalPrecision.trunc(-18.15, 2) === -18.15); // testing round to tens and hundreds console.log(DecimalPrecision.round(1262.48, -1) === 1260); console.log(DecimalPrecision.round(1262.48, -2) === 1300); // testing toFixed() console.log(DecimalPrecision.toFixed(1.005, 2) === "1.01");

Solution 2: purely mathematical (Number.EPSILON)

This solution avoids any string conversion / manipulation of any kind for performance reasons.

 // Solution 2 var DecimalPrecision2 = (function() { if (Number.EPSILON === undefined) { Number.EPSILON = Math.pow(2, -52); } if (Math.trunc === undefined) { Math.trunc = function(v) { return v < 0 ? Math.ceil(v) : Math.floor(v); }; } var powers = [ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22 ]; var intpow10 = function(power) { if (power < 0 || power > 22) { return Math.pow(10, power); } return powers[power]; }; var isRound = function(num, decimalPlaces) { //return decimalPlaces >= 0 && // +num.toFixed(decimalPlaces) === num; var p = intpow10(decimalPlaces); return Math.round(num * p) / p === num; }; var decimalAdjust = function(type, num, decimalPlaces) { if (type !== 'round' && isRound(num, decimalPlaces || 0)) return num; var p = intpow10(decimalPlaces || 0); var n = (num * p) * (1 + Number.EPSILON); return Math[type](n) / p; }; return { // Decimal round (half away from zero) round: function(num, decimalPlaces) { return decimalAdjust('round', num, decimalPlaces); }, // Decimal ceil ceil: function(num, decimalPlaces) { return decimalAdjust('ceil', num, decimalPlaces); }, // Decimal floor floor: function(num, decimalPlaces) { return decimalAdjust('floor', num, decimalPlaces); }, // Decimal trunc trunc: function(num, decimalPlaces) { return decimalAdjust('trunc', num, decimalPlaces); }, // Format using fixed-point notation toFixed: function(num, decimalPlaces) { return decimalAdjust('round', num, decimalPlaces).toFixed(decimalPlaces); } }; })(); // test rounding of half console.log(DecimalPrecision2.round(0.5)); // 1 console.log(DecimalPrecision2.round(-0.5)); // -1 // testing very small numbers console.log(DecimalPrecision2.ceil(1e-8, 2) === 0.01); console.log(DecimalPrecision2.floor(1e-8, 2) === 0); // testing simple cases console.log(DecimalPrecision2.round(5.12, 1) === 5.1); console.log(DecimalPrecision2.round(-5.12, 1) === -5.1); console.log(DecimalPrecision2.ceil(5.12, 1) === 5.2); console.log(DecimalPrecision2.ceil(-5.12, 1) === -5.1); console.log(DecimalPrecision2.floor(5.12, 1) === 5.1); console.log(DecimalPrecision2.floor(-5.12, 1) === -5.2); console.log(DecimalPrecision2.trunc(5.12, 1) === 5.1); console.log(DecimalPrecision2.trunc(-5.12, 1) === -5.1); // testing edge cases for round console.log(DecimalPrecision2.round(1.005, 2) === 1.01); console.log(DecimalPrecision2.round(39.425, 2) === 39.43); console.log(DecimalPrecision2.round(-1.005, 2) === -1.01); console.log(DecimalPrecision2.round(-39.425, 2) === -39.43); // testing edge cases for ceil console.log(DecimalPrecision2.ceil(9.13, 2) === 9.13); console.log(DecimalPrecision2.ceil(65.18, 2) === 65.18); console.log(DecimalPrecision2.ceil(-2.26, 2) === -2.26); console.log(DecimalPrecision2.ceil(-18.15, 2) === -18.15); // testing edge cases for floor console.log(DecimalPrecision2.floor(2.26, 2) === 2.26); console.log(DecimalPrecision2.floor(18.15, 2) === 18.15); console.log(DecimalPrecision2.floor(-9.13, 2) === -9.13); console.log(DecimalPrecision2.floor(-65.18, 2) === -65.18); // testing edge cases for trunc console.log(DecimalPrecision2.trunc(2.26, 2) === 2.26); console.log(DecimalPrecision2.trunc(18.15, 2) === 18.15); console.log(DecimalPrecision2.trunc(-2.26, 2) === -2.26); console.log(DecimalPrecision2.trunc(-18.15, 2) === -18.15); // testing round to tens and hundreds console.log(DecimalPrecision2.round(1262.48, -1) === 1260); console.log(DecimalPrecision2.round(1262.48, -2) === 1300); // testing toFixed() console.log(DecimalPrecision2.toFixed(1.005, 2) === "1.01");

Solution 3: double rounding

This solution uses the toPrecision() method to strip the floating-point round-off errors.

 // Solution 3 var DecimalPrecision3 = (function() { if (Math.trunc === undefined) { Math.trunc = function(v) { return v < 0 ? Math.ceil(v) : Math.floor(v); }; } var powers = [ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22 ]; var intpow10 = function(power) { if (power < 0 || power > 22) { return Math.pow(10, power); } return powers[power]; }; // Eliminate binary floating-point inaccuracies. var stripError = function(num) { if (Number.isInteger(num)) return num; return parseFloat(num.toPrecision(15)); }; var decimalAdjust = function myself(type, num, decimalPlaces) { if (type === 'round' && num < 0) return -myself(type, -num, decimalPlaces); var p = intpow10(decimalPlaces || 0); var n = stripError(num * p); return Math[type](n) / p; }; return { // Decimal round (half away from zero) round: function(num, decimalPlaces) { return decimalAdjust('round', num, decimalPlaces); }, // Decimal ceil ceil: function(num, decimalPlaces) { return decimalAdjust('ceil', num, decimalPlaces); }, // Decimal floor floor: function(num, decimalPlaces) { return decimalAdjust('floor', num, decimalPlaces); }, // Decimal trunc trunc: function(num, decimalPlaces) { return decimalAdjust('trunc', num, decimalPlaces); }, // Format using fixed-point notation toFixed: function(num, decimalPlaces) { return decimalAdjust('round', num, decimalPlaces).toFixed(decimalPlaces); } }; })(); // test rounding of half console.log(DecimalPrecision3.round(0.5)); // 1 console.log(DecimalPrecision3.round(-0.5)); // -1 // testing very small numbers console.log(DecimalPrecision3.ceil(1e-8, 2) === 0.01); console.log(DecimalPrecision3.floor(1e-8, 2) === 0); // testing simple cases console.log(DecimalPrecision3.round(5.12, 1) === 5.1); console.log(DecimalPrecision3.round(-5.12, 1) === -5.1); console.log(DecimalPrecision3.ceil(5.12, 1) === 5.2); console.log(DecimalPrecision3.ceil(-5.12, 1) === -5.1); console.log(DecimalPrecision3.floor(5.12, 1) === 5.1); console.log(DecimalPrecision3.floor(-5.12, 1) === -5.2); console.log(DecimalPrecision3.trunc(5.12, 1) === 5.1); console.log(DecimalPrecision3.trunc(-5.12, 1) === -5.1); // testing edge cases for round console.log(DecimalPrecision3.round(1.005, 2) === 1.01); console.log(DecimalPrecision3.round(39.425, 2) === 39.43); console.log(DecimalPrecision3.round(-1.005, 2) === -1.01); console.log(DecimalPrecision3.round(-39.425, 2) === -39.43); // testing edge cases for ceil console.log(DecimalPrecision3.ceil(9.13, 2) === 9.13); console.log(DecimalPrecision3.ceil(65.18, 2) === 65.18); console.log(DecimalPrecision3.ceil(-2.26, 2) === -2.26); console.log(DecimalPrecision3.ceil(-18.15, 2) === -18.15); // testing edge cases for floor console.log(DecimalPrecision3.floor(2.26, 2) === 2.26); console.log(DecimalPrecision3.floor(18.15, 2) === 18.15); console.log(DecimalPrecision3.floor(-9.13, 2) === -9.13); console.log(DecimalPrecision3.floor(-65.18, 2) === -65.18); // testing edge cases for trunc console.log(DecimalPrecision3.trunc(2.26, 2) === 2.26); console.log(DecimalPrecision3.trunc(18.15, 2) === 18.15); console.log(DecimalPrecision3.trunc(-2.26, 2) === -2.26); console.log(DecimalPrecision3.trunc(-18.15, 2) === -18.15); // testing round to tens and hundreds console.log(DecimalPrecision3.round(1262.48, -1) === 1260); console.log(DecimalPrecision3.round(1262.48, -2) === 1300); // testing toFixed() console.log(DecimalPrecision3.toFixed(1.005, 2) === "1.01");

Solution 4: double rounding v2

This solution is just like Solution 3, however it uses a custom toPrecision() function.

 // Solution 4 var DecimalPrecision4 = (function() { if (Math.trunc === undefined) { Math.trunc = function(v) { return v < 0 ? Math.ceil(v) : Math.floor(v); }; } var powers = [ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22 ]; var intpow10 = function(power) { if (power < 0 || power > 22) { return Math.pow(10, power); } return powers[power]; }; var toPrecision = function(num, significantDigits) { // Return early for ±0, NaN and Infinity. if (!num || !Number.isFinite(num)) return num; // Compute shift of the decimal point (sf - leftSidedDigits). var shift = significantDigits - 1 - Math.floor(Math.log10(Math.abs(num))); // Return if rounding to the same or higher precision. var decimalPlaces = 0; for (var p = 1; num != Math.round(num * p) / p; p *= 10) decimalPlaces++; if (shift >= decimalPlaces) return num; // Round to "shift" fractional digits var scale = intpow10(Math.abs(shift)); return shift > 0 ? Math.round(num * scale) / scale : Math.round(num / scale) * scale; }; // Eliminate binary floating-point inaccuracies. var stripError = function(num) { if (Number.isInteger(num)) return num; return toPrecision(num, 15); }; var decimalAdjust = function myself(type, num, decimalPlaces) { if (type === 'round' && num < 0) return -myself(type, -num, decimalPlaces); var p = intpow10(decimalPlaces || 0); var n = stripError(num * p); return Math[type](n) / p; }; return { // Decimal round (half away from zero) round: function(num, decimalPlaces) { return decimalAdjust('round', num, decimalPlaces); }, // Decimal ceil ceil: function(num, decimalPlaces) { return decimalAdjust('ceil', num, decimalPlaces); }, // Decimal floor floor: function(num, decimalPlaces) { return decimalAdjust('floor', num, decimalPlaces); }, // Decimal trunc trunc: function(num, decimalPlaces) { return decimalAdjust('trunc', num, decimalPlaces); }, // Format using fixed-point notation toFixed: function(num, decimalPlaces) { return decimalAdjust('round', num, decimalPlaces).toFixed(decimalPlaces); } }; })(); // test rounding of half console.log(DecimalPrecision4.round(0.5)); // 1 console.log(DecimalPrecision4.round(-0.5)); // -1 // testing very small numbers console.log(DecimalPrecision4.ceil(1e-8, 2) === 0.01); console.log(DecimalPrecision4.floor(1e-8, 2) === 0); // testing simple cases console.log(DecimalPrecision4.round(5.12, 1) === 5.1); console.log(DecimalPrecision4.round(-5.12, 1) === -5.1); console.log(DecimalPrecision4.ceil(5.12, 1) === 5.2); console.log(DecimalPrecision4.ceil(-5.12, 1) === -5.1); console.log(DecimalPrecision4.floor(5.12, 1) === 5.1); console.log(DecimalPrecision4.floor(-5.12, 1) === -5.2); console.log(DecimalPrecision4.trunc(5.12, 1) === 5.1); console.log(DecimalPrecision4.trunc(-5.12, 1) === -5.1); // testing edge cases for round console.log(DecimalPrecision4.round(1.005, 2) === 1.01); console.log(DecimalPrecision4.round(39.425, 2) === 39.43); console.log(DecimalPrecision4.round(-1.005, 2) === -1.01); console.log(DecimalPrecision4.round(-39.425, 2) === -39.43); // testing edge cases for ceil console.log(DecimalPrecision4.ceil(9.13, 2) === 9.13); console.log(DecimalPrecision4.ceil(65.18, 2) === 65.18); console.log(DecimalPrecision4.ceil(-2.26, 2) === -2.26); console.log(DecimalPrecision4.ceil(-18.15, 2) === -18.15); // testing edge cases for floor console.log(DecimalPrecision4.floor(2.26, 2) === 2.26); console.log(DecimalPrecision4.floor(18.15, 2) === 18.15); console.log(DecimalPrecision4.floor(-9.13, 2) === -9.13); console.log(DecimalPrecision4.floor(-65.18, 2) === -65.18); // testing edge cases for trunc console.log(DecimalPrecision4.trunc(2.26, 2) === 2.26); console.log(DecimalPrecision4.trunc(18.15, 2) === 18.15); console.log(DecimalPrecision4.trunc(-2.26, 2) === -2.26); console.log(DecimalPrecision4.trunc(-18.15, 2) === -18.15); // testing round to tens and hundreds console.log(DecimalPrecision4.round(1262.48, -1) === 1260); console.log(DecimalPrecision4.round(1262.48, -2) === 1300); // testing toFixed() console.log(DecimalPrecision4.toFixed(1.005, 2) === "1.01");

Benchmarks

http://jsbench.github.io/#31ec3a8b3d22bd840f8e6822e681a3ac

Here is a benchmark comparing the operations per second in the solutions above on Chrome 85.0.4183.83. Obviously all browsers differ, so your mileage may vary.

基准比较 (Note: More is better)

Thanks @Mike for adding a screenshot of the benchmark.

This question is complicated.

Suppose we have a function, roundTo2DP(num) , that takes a float as an argument and returns a value rounded to 2 decimal places. What should each of these expressions evaluate to?

  • roundTo2DP(0.014999999999999999)
  • roundTo2DP(0.0150000000000000001)
  • roundTo2DP(0.015)

The 'obvious' answer is that the first example should round to 0.01 (because it's closer to 0.01 than to 0.02) while the other two should round to 0.02 (because 0.0150000000000000001 is closer to 0.02 than to 0.01, and because 0.015 is exactly halfway between them and there is a mathematical convention that such numbers get rounded up).

The catch, which you may have guessed, is that roundTo2DP cannot possibly be implemented to give those obvious answers, because all three numbers passed to it are the same number . IEEE 754 binary floating point numbers (the kind used by JavaScript) can't exactly represent most non-integer numbers, and so all three numeric literals above get rounded to a nearby valid floating point number. This number, as it happens, is exactly

0.01499999999999999944488848768742172978818416595458984375

which is closer to 0.01 than to 0.02.

You can see that all three numbers are the same at your browser console, Node shell, or other JavaScript interpreter. Just compare them:

> 
true

So when I write m = 0.0150000000000000001 , the exact value of m that I end up with is closer to 0.01 than it is to 0.02 . And yet, if I convert m to a String...

> 
> 
0.015
> 
> 
0.015

... I get 0.015, which should round to 0.02, and which is noticeably not the 56-decimal-place number I earlier said that all of these numbers were exactly equal to. So what dark magic is this?

The answer can be found in the ECMAScript specification, in section 7.1.12.1: ToString applied to the Number type . Here the rules for converting some Number m to a String are laid down. The key part is point 5, in which an integer s is generated whose digits will be used in the String representation of m :

let n , k , and s be integers such that k ≥ 1, 10 k -1s < 10 k , the Number value for s × 10 n - k is m , and k is as small as possible. Note that k is the number of digits in the decimal representation of s , that s is not divisible by 10, and that the least significant digit of s is not necessarily uniquely determined by these criteria.

The key part here is the requirement that " k is as small as possible". What that requirement amounts to is a requirement that, given a Number m , the value of String(m) must have the least possible number of digits while still satisfying the requirement that Number(String(m)) === m . Since we already know that 0.015 === 0.0150000000000000001 , it's now clear why String(0.0150000000000000001) === '0.015' must be true.

Of course, none of this discussion has directly answered what roundTo2DP(m) should return. If m 's exact value is 0.01499999999999999944488848768742172978818416595458984375, but its String representation is '0.015', then what is the correct answer - mathematically, practically, philosophically, or whatever - when we round it to two decimal places?

There is no single correct answer to this. It depends upon your use case. You probably want to respect the String representation and round upwards when:

  • The value being represented is inherently discrete, eg an amount of currency in a 3-decimal-place currency like dinars. In this case, the true value of a Number like 0.015 is 0.015, and the 0.0149999999... representation that it gets in binary floating point is a rounding error. (Of course, many will argue, reasonably, that you should use a decimal library for handling such values and never represent them as binary floating point Numbers in the first place.)
  • The value was typed by a user. In this case, again, the exact decimal number entered is more 'true' than the nearest binary floating point representation.

On the other hand, you probably want to respect the binary floating point value and round downwards when your value is from an inherently continuous scale - for instance, if it's a reading from a sensor.

These two approaches require different code. To respect the String representation of the Number, we can (with quite a bit of reasonably subtle code) implement our own rounding that acts directly on the String representation, digit by digit, using the same algorithm you would've used in school when you were taught how to round numbers. Below is an example which respects the OP's requirement of representing the number to 2 decimal places "only when necessary" by stripping trailing zeroes after the decimal point; you may, of course, need to tweak it to your precise needs.

/**
 * Converts num to a decimal string (if it isn't one already) and then rounds it
 * to at most dp decimal places.
 *
 * For explanation of why you'd want to perform rounding operations on a String
 * rather than a Number, see http://stackoverflow.com/a/38676273/1709587
 *
 * @param {(number|string)} num
 * @param {number} dp
 * @return {string}
 */
function roundStringNumberWithoutTrailingZeroes (num, dp) {
    if (arguments.length != 2) throw new Error("2 arguments required");

    num = String(num);
    if (num.indexOf('e+') != -1) {
        // Can't round numbers this large because their string representation
        // contains an exponent, like 9.99e+37
        throw new Error("num too large");
    }
    if (num.indexOf('.') == -1) {
        // Nothing to do
        return num;
    }

    var parts = num.split('.'),
        beforePoint = parts[0],
        afterPoint = parts[1],
        shouldRoundUp = afterPoint[dp] >= 5,
        finalNumber;

    afterPoint = afterPoint.slice(0, dp);
    if (!shouldRoundUp) {
        finalNumber = beforePoint + '.' + afterPoint;
    } else if (/^9+$/.test(afterPoint)) {
        // If we need to round up a number like 1.9999, increment the integer
        // before the decimal point and discard the fractional part.
        finalNumber = Number(beforePoint)+1;
    } else {
        // Starting from the last digit, increment digits until we find one
        // that is not 9, then stop
        var i = dp-1;
        while (true) {
            if (afterPoint[i] == '9') {
                afterPoint = afterPoint.substr(0, i) +
                             '0' +
                             afterPoint.substr(i+1);
                i--;
            } else {
                afterPoint = afterPoint.substr(0, i) +
                             (Number(afterPoint[i]) + 1) +
                             afterPoint.substr(i+1);
                break;
            }
        }

        finalNumber = beforePoint + '.' + afterPoint;
    }

    // Remove trailing zeroes from fractional part before returning
    return finalNumber.replace(/0+$/, '')
}

Example usage:

> 
'1.6'
> 
'10000'
> 
'0.02'
> 
'0.02'
> 
'1'
> 
'0.02'
> 
'0.02'
> 
'0.01'

The function above is probably what you want to use to avoid users ever witnessing numbers that they have entered being rounded wrongly.

(As an alternative, you could also try the round10 library which provides a similarly-behaving function with a wildly different implementation.)

But what if you have the second kind of Number - a value taken from a continuous scale, where there's no reason to think that approximate decimal representations with fewer decimal places are more accurate than those with more? In that case, we don't want to respect the String representation, because that representation (as explained in the spec) is already sort-of-rounded; we don't want to make the mistake of saying "0.014999999...375 rounds up to 0.015, which rounds up to 0.02, so 0.014999999...375 rounds up to 0.02".

Here we can simply use the built-in toFixed method. Note that by calling Number() on the String returned by toFixed , we get a Number whose String representation has no trailing zeroes (thanks to the way JavaScript computes the String representation of a Number, discussed earlier in this answer).

/**
 * Takes a float and rounds it to at most dp decimal places. For example
 *
 *     roundFloatNumberWithoutTrailingZeroes(1.2345, 3)
 *
 * returns 1.234
 *
 * Note that since this treats the value passed to it as a floating point
 * number, it will have counterintuitive results in some cases. For instance,
 * 
 *     roundFloatNumberWithoutTrailingZeroes(0.015, 2)
 *
 * gives 0.01 where 0.02 might be expected. For an explanation of why, see
 * http://stackoverflow.com/a/38676273/1709587. You may want to consider using the
 * roundStringNumberWithoutTrailingZeroes function there instead.
 *
 * @param {number} num
 * @param {number} dp
 * @return {number}
 */
function roundFloatNumberWithoutTrailingZeroes (num, dp) {
    var numToFixedDp = Number(num).toFixed(dp);
    return Number(numToFixedDp);
}

Consider .toFixed() and .toPrecision() :

http://www.javascriptkit.com/javatutors/formatnumber.shtml

One can use .toFixed(NumberOfDecimalPlaces) .

var str = 10.234.toFixed(2); // => '10.23'
var number = Number(str); // => 10.23

None of the answers found here is correct . stinkycheeseman asked to round up , but you all rounded the number.

To round up, use this:

Math.ceil(num * 100)/100;

Here is a simple way to do it:

Math.round(value * 100) / 100

You might want to go ahead and make a separate function to do it for you though:

function roundToTwo(value) {
    return(Math.round(value * 100) / 100);
}

Then you would simply pass in the value.

You could enhance it to round to any arbitrary number of decimals by adding a second parameter.

function myRound(value, places) {
    var multiplier = Math.pow(10, places);

    return (Math.round(value * multiplier) / multiplier);
}

A precise rounding method. Source: Mozilla

(function(){

    /**
     * Decimal adjustment of a number.
     *
     * @param   {String}    type    The type of adjustment.
     * @param   {Number}    value   The number.
     * @param   {Integer}   exp     The exponent (the 10 logarithm of the adjustment base).
     * @returns {Number}            The adjusted value.
     */
    function decimalAdjust(type, value, exp) {
        // If the exp is undefined or zero...
        if (typeof exp === 'undefined' || +exp === 0) {
            return Math[type](value);
        }
        value = +value;
        exp = +exp;
        // If the value is not a number or the exp is not an integer...
        if (isNaN(value) || !(typeof exp === 'number' && exp % 1 === 0)) {
            return NaN;
        }
        // Shift
        value = value.toString().split('e');
        value = Math[type](+(value[0] + 'e' + (value[1] ? (+value[1] - exp) : -exp)));
        // Shift back
        value = value.toString().split('e');
        return +(value[0] + 'e' + (value[1] ? (+value[1] + exp) : exp));
    }

    // Decimal round
    if (!Math.round10) {
        Math.round10 = function(value, exp) {
            return decimalAdjust('round', value, exp);
        };
    }
    // Decimal floor
    if (!Math.floor10) {
        Math.floor10 = function(value, exp) {
            return decimalAdjust('floor', value, exp);
        };
    }
    // Decimal ceil
    if (!Math.ceil10) {
        Math.ceil10 = function(value, exp) {
            return decimalAdjust('ceil', value, exp);
        };
    }
})();

Examples:

// Round
Math.round10(55.55, -1); // 55.6
Math.round10(55.549, -1); // 55.5
Math.round10(55, 1); // 60
Math.round10(54.9, 1); // 50
Math.round10(-55.55, -1); // -55.5
Math.round10(-55.551, -1); // -55.6
Math.round10(-55, 1); // -50
Math.round10(-55.1, 1); // -60
Math.round10(1.005, -2); // 1.01 -- compare this with Math.round(1.005*100)/100 above
// Floor
Math.floor10(55.59, -1); // 55.5
Math.floor10(59, 1); // 50
Math.floor10(-55.51, -1); // -55.6
Math.floor10(-51, 1); // -60
// Ceil
Math.ceil10(55.51, -1); // 55.6
Math.ceil10(51, 1); // 60
Math.ceil10(-55.59, -1); // -55.5
Math.ceil10(-59, 1); // -50

This may help you:

var result = Math.round(input*100)/100;

For more information, you can have a look at Math.round(num) vs num.toFixed(0) and browser inconsistencies

使用这个函数Number(x).toFixed(2);

For me Math.round() was not giving correct answer. I found toFixed(2) works better. Below are examples of both:

 console.log(Math.round(43000 / 80000) * 100); // wrong answer console.log(((43000 / 80000) * 100).toFixed(2)); // correct answer

+(10).toFixed(2); // = 10
+(10.12345).toFixed(2); // = 10.12

(10).toFixed(2); // = 10.00
(10.12345).toFixed(2); // = 10.12

Try this lightweight solution:

function round(x, digits){
  return parseFloat(x.toFixed(digits))
}

 round(1.222,  2);
 // 1.22
 round(1.222, 10);
 // 1.222

There are a couple of ways to do that. For people like me, Lodash's variant

function round(number, precision) {
    var pair = (number + 'e').split('e')
    var value = Math.round(pair[0] + 'e' + (+pair[1] + precision))
    pair = (value + 'e').split('e')
    return +(pair[0] + 'e' + (+pair[1] - precision))
}

Usage:

round(0.015, 2) // 0.02
round(1.005, 2) // 1.01

If your project uses jQuery or Lodash, you can also find the proper round method in the libraries.

If you are using the Lodash library, you can use the round method of Lodash like following.

_.round(number, precision)

For example:

_.round(1.7777777, 2) = 1.78

2017
Just use native code .toFixed()

number = 1.2345;
number.toFixed(2) // "1.23"

If you need to be strict and add digits just if needed it can use replace

number = 1; // "1"
number.toFixed(5).replace(/\.?0*$/g,'');

Since ES6 there is a 'proper' way (without overriding statics and creating workarounds) to do this by using toPrecision

 var x = 1.49999999999; console.log(x.toPrecision(4)); console.log(x.toPrecision(3)); console.log(x.toPrecision(2)); var y = Math.PI; console.log(y.toPrecision(6)); console.log(y.toPrecision(5)); console.log(y.toPrecision(4)); var z = 222.987654 console.log(z.toPrecision(6)); console.log(z.toPrecision(5)); console.log(z.toPrecision(4));

then you can just parseFloat and zeroes will 'go away'.

 console.log(parseFloat((1.4999).toPrecision(3))); console.log(parseFloat((1.005).toPrecision(3))); console.log(parseFloat((1.0051).toPrecision(3)));

It doesn't solve the '1.005 rounding problem' though - since it is intrinsic to how float fractions are being processed .

 console.log(1.005 - 0.005);

If you are open to libraries you can use bignumber.js

 console.log(1.005 - 0.005); console.log(new BigNumber(1.005).minus(0.005)); console.log(new BigNumber(1.005).round(4)); console.log(new BigNumber(1.005).round(3)); console.log(new BigNumber(1.005).round(2)); console.log(new BigNumber(1.005).round(1));
 <script src="https://cdnjs.cloudflare.com/ajax/libs/bignumber.js/2.3.0/bignumber.min.js"></script>

The easiest approach would be to use toFixed and then strip trailing zeros using the Number function:

const number = 15.5;
Number(number.toFixed(2)); // 15.5
const number = 1.7777777;
Number(number.toFixed(2)); // 1.78

MarkG and Lavamantis offered a much better solution than the one that has been accepted. It's a shame they don't get more upvotes!

Here is the function I use to solve the floating point decimals issues also based on MDN . It is even more generic (but less concise) than Lavamantis's solution:

function round(value, exp) {
  if (typeof exp === 'undefined' || +exp === 0)
    return Math.round(value);

  value = +value;
  exp  = +exp;

  if (isNaN(value) || !(typeof exp === 'number' && exp % 1 === 0))
    return NaN;

  // Shift
  value = value.toString().split('e');
  value = Math.round(+(value[0] + 'e' + (value[1] ? (+value[1] + exp) : exp)));

  // Shift back
  value = value.toString().split('e');
  return +(value[0] + 'e' + (value[1] ? (+value[1] - exp) : -exp));
}

Use it with:

round(10.8034, 2);      // Returns 10.8
round(1.275, 2);        // Returns 1.28
round(1.27499, 2);      // Returns 1.27
round(1.2345678e+2, 2); // Returns 123.46

Compared to Lavamantis's solution, we can do...

round(1234.5678, -2); // Returns 1200
round("123.45");      // Returns 123

It may work for you,

Math.round(num * 100)/100;

to know the difference between toFixed and round. You can have a look at Math.round(num) vs num.toFixed(0) and browser inconsistencies .

One way to achieve such a rounding only if necessary is to use Number.prototype.toLocaleString() :

myNumber.toLocaleString('en', {maximumFractionDigits:2, useGrouping:false})

This will provide exactly the output you expect, but as strings. You can still convert those back to numbers if that's not the data type you expect.

This is the simplest, more elegant solution (and I am the best of the world;):

function roundToX(num, X) {    
    return +(Math.round(num + "e+"+X)  + "e-"+X);
}
//roundToX(66.66666666,2) => 66.67
//roundToX(10,2) => 10
//roundToX(10.904,2) => 10.9

Modern syntax alternative with fallback values

const roundToX = (num = 0, X = 20) => +(Math.round(num + `e${X}`)  + `e-${X}`)
var roundUpto = function(number, upto){
    return Number(number.toFixed(upto));
}
roundUpto(0.1464676, 2);

toFixed(2) : Here 2 is the number of digits up to which we want to round this number.

See @AmrAli's answer for a more thorough run through and performance breakdown of all the various adaptations of this solution.

 var DecimalPrecision = (function(){ if (Number.EPSILON === undefined) { Number.EPSILON = Math.pow(2, -52); } if(Number.isInteger === undefined){ Number.isInteger = function(value) { return typeof value === 'number' && isFinite(value) && Math.floor(value) === value; }; } this.isRound = function(n,p){ let l = n.toString().split('.')[1].length; return (p >= l); } this.round = function(n, p=2){ if(Number.isInteger(n) || this.isRound(n,p)) return n; let r = 0.5 * Number.EPSILON * n; let o = 1; while(p-- > 0) o *= 10; if(n<0) o *= -1; return Math.round((n + r) * o) / o; } this.ceil = function(n, p=2){ if(Number.isInteger(n) || this.isRound(n,p)) return n; let r = 0.5 * Number.EPSILON * n; let o = 1; while(p-- > 0) o *= 10; return Math.ceil((n + r) * o) / o; } this.floor = function(n, p=2){ if(Number.isInteger(n) || this.isRound(n,p)) return n; let r = 0.5 * Number.EPSILON * n; let o = 1; while(p-- > 0) o *= 10; return Math.floor((n + r) * o) / o; } return this; })(); console.log(DecimalPrecision.round(1.005)); console.log(DecimalPrecision.ceil(1.005)); console.log(DecimalPrecision.floor(1.005)); console.log(DecimalPrecision.round(1.0049999)); console.log(DecimalPrecision.ceil(1.0049999)); console.log(DecimalPrecision.floor(1.0049999)); console.log(DecimalPrecision.round(2.175495134384,7)); console.log(DecimalPrecision.round(2.1753543549,8)); console.log(DecimalPrecision.round(2.1755465135353,4)); console.log(DecimalPrecision.ceil(17,4)); console.log(DecimalPrecision.ceil(17.1,4)); console.log(DecimalPrecision.ceil(17.1,15));

Easiest way:

+num.toFixed(2)

It converts it to a string, and then back into an integer / float.

Another simple solution (without writing any function) may to use toFixed() and then convert to float again:

For example:

var objNumber = 1201203.1256546456;
objNumber = parseFloat(objNumber.toFixed(2))

Use something like this "parseFloat(parseFloat(value).toFixed(2))"

parseFloat(parseFloat("1.7777777").toFixed(2))-->1.78 
parseFloat(parseFloat("10").toFixed(2))-->10 
parseFloat(parseFloat("9.1").toFixed(2))-->9.1

Here is a prototype method:

Number.prototype.round = function(places){
    places = Math.pow(10, places); 
    return Math.round(this * places)/places;
}

var yournum = 10.55555;
yournum = yournum.round(2);

要不处理许多 0,请使用以下变体:

Math.round(num * 1e2) / 1e2

Keep type as integer for later sorting or other math operations:

Math.round(1.7777777 * 100)/100

1.78

// Round up!
Math.ceil(1.7777777 * 100)/100 

1.78

// Round down!
Math.floor(1.7777777 * 100)/100

1.77

Or convert to string:

(1.7777777).toFixed(2)

"1.77"

2022, native, without library, modern browser, clear and readable.

 function round( value, minimumFractionDigits, maximumFractionDigits ) { const formattedValue = value.toLocaleString('en', { useGrouping: false, minimumFractionDigits, maximumFractionDigits }) return Number(formattedValue) } console.log(round(21.891, 2, 3)) // 21.891 console.log(round(21.0001, 0, 1)) // 21.0 console.log(round(1.8, 2)) // 1.80 console.log(round(0.875, 3)) // 0.875

If you happen to already be using the D3.js library, they have a powerful number formatting library .

Rounding specifically is at D3 round .

In your case, the answer is:

> d3.round(1.777777, 2)
1.78

> d3.round(1.7, 2)
1.7

> d3.round(1, 2)
1

A simpler ES6 way is

const round = (x, n) => 
  Number(parseFloat(Math.round(x * Math.pow(10, n)) / Math.pow(10, n)).toFixed(n));

This pattern also returns the precision asked for.

ex:

round(44.7826456, 4)  // yields 44.7826
round(78.12, 4)       // yields 78.12

parseFloat("1.555").toFixed(2); // Returns 1.55 instead of 1.56.

1.55 is the absolute correct result, because there exists no exact representation of 1.555 in the computer. If reading 1.555 it is rounded to the nearest possible value = 1.55499999999999994 (64 bit float). And rounding this number by toFixed(2) results in 1.55.

All other functions provided here give fault result, if the input is 1.55499999999999.

Solution: Append the digit "5" before scanning to rounding up (more exact: rounding away from 0) the number. Do this only, if the number is really a float (has a decimal point).

parseFloat("1.555"+"5").toFixed(2); // Returns 1.56

A different approach is to use a library. Use Lodash :

const _ = require("lodash")
const roundedNumber = _.round(originalNumber, 2)

I reviewed every answer of this post. Here is my take on the matter:

 const nbRounds = 7; const round = (x, n=2) => { const precision = Math.pow(10, n) return Math.round((x+Number.EPSILON) * precision ) / precision; } let i = 0; while( nbRounds > i++ ) { console.log("round(1.00083899, ",i,") > ", round(1.00083899, i)) console.log("round(1.83999305, ",i,") > ", round(1.83999305, i)) }

A simple solution would be use Lodash's ceil function if you want to round up...

_.round(6.001, 2)

gives 6

_.ceil(6.001, 2);

gives 6.01

_.ceil(37.4929, 2);

gives 37.5

_.round(37.4929, 2);

gives 37.49

A simple generic solution

 const round = (n, dp) => { const h = +('1'.padEnd(dp + 1, '0')) // 10 or 100 or 1000 or etc return Math.round(n * h) / h } console.log('round(2.3454, 3)', round(2.3454, 3)) // 2.345 console.log('round(2.3456, 3)', round(2.3456, 3)) // 2.346 console.log('round(2.3456, 2)', round(2.3456, 2)) // 2.35

Or just use Lodash round which has the same signature - for example, _.round(2.3456, 2)

Another approach to this:

number = 16.6666666;
console.log(parseFloat(number.toFixed(2)));
"16.67"

number = 16.6;
console.log(parseFloat(number.toFixed(2)));
"16.6"

number = 16;
console.log(parseFloat(number.toFixed(2)));
"16"

.toFixed(2) returns a string with exactly two decimal points, that may or may not be trailing zeros. Doing a parseFloat() will eliminate those trailing zeros.

This did the trick for me (TypeScript):

round(decimal: number, decimalPoints: number): number{
    let roundedValue = Math.round(decimal * Math.pow(10, decimalPoints)) / Math.pow(10, decimalPoints);

    console.log(`Rounded ${decimal} to ${roundedValue}`);
    return roundedValue;
}

Sample output

Rounded 18.339840000000436 to 18.34
Rounded 52.48283999999984 to 52.48
Rounded 57.24612000000036 to 57.25
Rounded 23.068320000000142 to 23.07
Rounded 7.792980000000398 to 7.79
Rounded 31.54157999999981 to 31.54
Rounded 36.79686000000004 to 36.8
Rounded 34.723080000000124 to 34.72
Rounded 8.4375 to 8.44
Rounded 15.666960000000074 to 15.67
Rounded 29.531279999999924 to 29.53
Rounded 8.277420000000006 to 8.28

Based on the chosen answer and the upvoted comment on the same question:

Math.round((num + 0.00001) * 100) / 100

This works for both these examples:

Math.round((1.005 + 0.00001) * 100) / 100

Math.round((1.0049 + 0.00001) * 100) / 100

The question is to round to two decimals.

Let's not make this complicated, modifying prototype chain, etc.

Here is one-line solution

 let round2dec = num => Math.round(num * 100) / 100; console.log(round2dec(1.77)); console.log(round2dec(1.774)); console.log(round2dec(1.777)); console.log(round2dec(10));

The mathematical floor and round definitions :

在此处输入图像描述

lead us to

 let round= x=> ( x+0.005 - (x+0.005)%0.01 +'' ).replace(/(\...)(.*)/,'$1'); // for a case like 1.384 we need to use a regexp to get only 2 digits after the dot // and cut off machine-error (epsilon) console.log(round(10)); console.log(round(1.7777777)); console.log(round(1.7747777)); console.log(round(1.384));

A simple general rounding function could be following:

Steps are:

  1. Multiply the number by (10 to the power of number of decimal place) using Math.pow(10,places) .
  2. Round the result to whole integer using Math.Round .
  3. Divide the result back by (10 to the power of number of decimal place) Math.pow(10,places) .

Example:

number is: 1.2375 to be rounded to 3 decimal places

  1. 1.2375 * (10^3) ==> 1.2375 * 1000 = 1237.5
  2. Round to integer ==> 1238
  3. Divide 1238 by (10^3) ==> 1238 / 1000 = 1.238

(note: 10^3 means Math.pow(10,3)).

 function numberRoundDecimal(v,n) { return Math.round((v+Number.EPSILON)*Math.pow(10,n))/Math.pow(10,n)} // ------- tests -------- console.log(numberRoundDecimal(-0.024641163062896567,3)) // -0.025 console.log(numberRoundDecimal(0.9993360575508052,3)) // 0.999 console.log(numberRoundDecimal(1.0020739645577939,3)) // 1.002 console.log(numberRoundDecimal(0.975,0)) // 1 console.log(numberRoundDecimal(0.975,1)) // 1 console.log(numberRoundDecimal(0.975,2)) // 0.98 console.log(numberRoundDecimal(1.005,2)) // 1.01

I've read all the answers, the answers of similar questions and the complexity of the most "good" solutions didn't satisfy me. I don't want to put a huge round function set, or a small one but fails on scientific notation. So, I came up with this function. It may help someone in my situation:

function round(num, dec) {
   const [sv, ev] = num.toString().split('e');
   return Number(Number(Math.round(parseFloat(sv + 'e' + dec)) + 'e-' + dec) + 'e' + (ev || 0));
}

I didn't run any performance test because I will call this just to update the UI of my application. The function gives the following results for a quick test:

// 1/3563143 = 2.806510993243886e-7
round(1/3563143, 2)  // returns `2.81e-7`

round(1.31645, 4)    // returns 1.3165

round(-17.3954, 2)   // returns -17.4

This is enough for me.

To round at decimal positions pos (including no decimals) do Math.round(num * Math.pow(10,pos)) / Math.pow(10,pos)

 var console = { log: function(s) { document.getElementById("console").innerHTML += s + "<br/>" } } var roundDecimals=function(num,pos) { return (Math.round(num * Math.pow(10,pos)) / Math.pow(10,pos) ); } //https://en.wikipedia.org/wiki/Pi var pi=3.14159265358979323846264338327950288419716939937510; for(var i=2;i<15;i++) console.log("pi="+roundDecimals(pi,i)); for(var i=15;i>=0;--i) console.log("pi="+roundDecimals(pi,i));
 <div id="console" />

I know there are many answers, but most of them have side effect in some specific cases.

Easiest and shortest solution without any side effects is following:

Number((2.3456789).toFixed(2)) // 2.35

It rounds properly and returns number instead of string

console.log(Number((2.345).toFixed(2)))  // 2.35
console.log(Number((2.344).toFixed(2)))  // 2.34
console.log(Number((2).toFixed(2)))      // 2
console.log(Number((-2).toFixed(2)))     // -2
console.log(Number((-2.345).toFixed(2))) // -2.35

console.log(Number((2.345678).toFixed(3))) // 2.346

Try to use the jQuery .number plug-in :

var number = 19.8000000007;
var res = 1 * $.number(number, 2);

You could also override the Math.round function to do the rounding correct and add a parameter for decimals and use it like: Math.round(Number, Decimals). Keep in mind that this overrides the built in component Math.round and giving it another property then it original is.

var round = Math.round;
Math.round = function (value, decimals) {
  decimals = decimals || 0;
  return Number(round(value + 'e' + decimals) + 'e-' + decimals);
}

Then you can simply use it like this:

Math.round(1.005, 2);

https://jsfiddle.net/k5tpq3pd/3/

I was building a simple tipCalculator and there was a lot of answers here that seemed to overcomplicate the issue. So I found summarizing the issue to be the best way to truly answer this question.

If you want to create a rounded decimal number, first you call toFixed(# of decimal places you want to keep) and then wrap that in a Number() .

So the end result:

let amountDue = 286.44;
tip = Number((amountDue * 0.2).toFixed(2));
console.log(tip)  // 57.29 instead of 57.288

The rounding problem can be avoided by using numbers represented in exponential notation.

public roundFinancial(amount: number, decimals: number) {
    return Number(Math.round(Number(`${amount}e${decimals}`)) + `e-${decimals}`);
}

Here is a function I came up with to do "round up". I used double Math.round to compensate for JavaScript's inaccurate multiplying, so 1.005 will be correctly rounded as 1.01.

function myRound(number, decimalplaces){
    if(decimalplaces > 0){
        var multiply1 = Math.pow(10,(decimalplaces + 4));
        var divide1 = Math.pow(10, decimalplaces);
        return Math.round(Math.round(number * multiply1)/10000 )/divide1;
    }
    if(decimalplaces < 0){
        var divide2 = Math.pow(10, Math.abs(decimalplaces));
        var multiply2 = Math.pow(10, Math.abs(decimalplaces));
        return Math.round(Math.round(number / divide2) * multiply2);
    }
    return Math.round(number);
}

I wrote the following set of functions for myself. Maybe it will help you too.

function float_exponent(number) {
    exponent = 1;
    while (number < 1.0) {
        exponent += 1
        number *= 10
    }
    return exponent;
}
function format_float(number, extra_precision) {
    precision = float_exponent(number) + (extra_precision || 0)
    return number.toFixed(precision).split(/\.?0+$/)[0]
}

Usage:

format_float(1.01); // 1
format_float(1.06); // 1.1
format_float(0.126); // 0.13
format_float(0.000189); // 0.00019

For you case:

format_float(10, 1); // 10
format_float(9.1, 1); // 9.1
format_float(1.77777, 1); // 1.78

Here is the shortest and complete answer:

function round(num, decimals) {
        var n = Math.pow(10, decimals);
        return Math.round( (n * num).toFixed(decimals) )  / n;
};

This also takes care of the example case 1.005 which will return 1.01.

The big challenge on this seemingly simple task is that we want it to yield psychologically expected results even if the input contains minimal rounding errors to start with (not mentioning the errors which will happen within our calculation). If we know that the real result is exactly 1.005, we expect that rounding to two digits yields 1.01, even if the 1.005 is the result of a large computation with loads of rounding errors on the way.

The problem becomes even more obvious when dealing with floor() instead of round() . For example, when cutting everything away after the last two digits behind the dot of 33.3, we would certainly not expect to get 33.29 as a result, but that is what happens:

 console.log(Math.floor(33.3 * 100) / 100)

In simple cases, the solution is to perform calculation on strings instead of floating point numbers, and thus avoid rounding errors completely. However, this option fails at the first non-trivial mathematical operation (including most divsions), and it is slow.

When operating on floating point numbers, the solution is to introduce a parameter which names the amount by which we are willing to deviate from the actual computation result, in order to output the psychologically expected result.

 var round = function(num, digits = 2, compensateErrors = 2) { if (num < 0) { return -this.round(-num, digits, compensateErrors); } const pow = Math.pow(10, digits); return (Math.round(num * pow * (1 + compensateErrors * Number.EPSILON)) / pow); } /* --- testing --- */ console.log("Edge cases mentioned in this thread:") var values = [ 0.015, 1.005, 5.555, 156893.145, 362.42499999999995, 1.275, 1.27499, 1.2345678e+2, 2.175, 5.015, 58.9 * 0.15 ]; values.forEach((n) => { console.log(n + " -> " + round(n)); console.log(-n + " -> " + round(-n)); }); console.log("\nFor numbers which are so large that rounding cannot be performed anyway within computation precision, only string-based computation can help.") console.log("Standard: " + round(1e+19)); console.log("Compensation = 1: " + round(1e+19, 2, 1)); console.log("Effectively no compensation: " + round(1e+19, 2, 0.4));

Note: Internet Explorer does not know Number.EPSILON . If you are in the unhappy position of still having to support it, you can use a shim, or just define the constant yourself for that specific browser family.

A slight variation on this is if you need to format a currency amount as either being a whole amount of currency or an amount with fractional currency parts.

For example:

1 should output $1

1.1 should output $1.10

1.01 should output $1.01

Assuming amount is a number:

const formatAmount = (amount) => amount % 1 === 0 ? amount : amount.toFixed(2);

If amount is not a number then use parseFloat(amount) to convert it to a number.

Just for the record, the scaling method could theoretically return Infinity if the number and the digits you want to round to are big enough. In JavaScript that shouldn't be a problem since the maximum number is 1.7976931348623157e+308, but if you're working with really big numbers or a lot of decimal places you could try this function instead:

 Number.prototype.roundTo = function(digits) { var str = this.toString(); var split = this.toString().split('e'); var scientific = split.length > 1; var index; if (scientific) { str = split[0]; var decimal = str.split('.'); if (decimal.length < 2) return this; index = decimal[0].length + 1 + digits; } else index = Math.floor(this).toString().length + 1 + digits; if (str.length <= index) return this; var digit = str[index + 1]; var num = Number.parseFloat(str.substring(0, index)); if (digit >= 5) { var extra = Math.pow(10, -digits); return this < 0 ? num - extra : num + extra; } if (scientific) num += "e" + split[1]; return num; }

Starting from the example proposed over the precisionRound that I found on MDN (that event for 1.005 returns 1 and not 1.01), I write a custom precisionRound that manage a random precision number and for 1.005 returns 1.01.

This is the function:

function precisionRound(number, precision)
{
  if(precision < 0)
  {
    var factor = Math.pow(10, precision);
    return Math.round(number * factor) / factor;
  }
  else
    return +(Math.round(number + "e+"+precision)  + "e-"+precision);
}

console.log(precisionRound(1234.5678, 1));  // output: 1234.6
console.log(precisionRound(1234.5678, -1)); // output: 1230
console.log(precisionRound(1.005, 2));      // output: 1.01
console.log(precisionRound(1.0005, 2));     // output: 1
console.log(precisionRound(1.0005, 3));     // output: 1.001
console.log(precisionRound(1.0005, 4));     // output: 1.0005

For TypeScript:

public static precisionRound(number: number, precision: number)
{
  if (precision < 0)
  {
    let factor = Math.pow(10, precision);
    return Math.round(number * factor) / factor;
  }
  else
    return +(Math.round(Number(number + "e+" + precision)) +
      "e-" + precision);
}

From the existing answers I found another solution which seems to work great, which also works with sending in a string and eliminates trailing zeros.

function roundToDecimal(string, decimals) {
    return parseFloat(parseFloat(string).toFixed(decimals));
}

It doesn't take in to account if you send in some bull.. like "apa" though. Or it will probably throw an error which I think is the proper way anyway, it's never good to hide errors that should be fixed (by the calling function).

This worked pretty well for me when wanting to always round up to a certain decimal. The key here is that we will always be rounding up with the Math.ceil function.

You could conditionally select ceil or floor if needed.

 /** * Possibility to lose precision at large numbers * @param number * @returns Number number */ var roundUpToNearestHundredth = function(number) { // Ensure that we use high precision Number number = Number(number); // Save the original number so when we extract the Hundredth decimal place we don't bit switch or lose precision var numberSave = Number(number.toFixed(0)); // Remove the "integer" values off the top of the number number = number - numberSave; // Get the Hundredth decimal places number *= 100; // Ceil the decimals. Therefore .15000001 will equal .151, etc. number = Math.ceil(number); // Put the decimals back into their correct spot number /= 100; // Add the "integer" back onto the number return number + numberSave; }; console.log(roundUpToNearestHundredth(6132423.1200000000001))

Here's my solution to this problem:

function roundNumber(number, precision = 0) {
var num = number.toString().replace(",", "");
var integer, decimal, significantDigit;

if (num.indexOf(".") > 0 && num.substring(num.indexOf(".") + 1).length > precision && precision > 0) {
    integer = parseInt(num).toString();
    decimal = num.substring(num.indexOf(".") + 1);
    significantDigit = Number(decimal.substr(precision, 1));

    if (significantDigit >= 5) {
        decimal = (Number(decimal.substr(0, precision)) + 1).toString();
        return integer + "." + decimal;
    } else {
        decimal = (Number(decimal.substr(0, precision)) + 1).toString();
        return integer + "." + decimal;
    }
}
else if (num.indexOf(".") > 0) {
    integer = parseInt(num).toString();
    decimal = num.substring(num.indexOf(".") + 1);
    significantDigit = num.substring(num.length - 1, 1);

    if (significantDigit >= 5) {
        decimal = (Number(decimal) + 1).toString();
        return integer + "." + decimal;
    } else {            
        return integer + "." + decimal;
    }
} 

return number;
}

A slight modification of this answer that seems to work well.

Function

function roundToStep(value, stepParam) {
   var step = stepParam || 1.0;
   var inv = 1.0 / step;
   return Math.round(value * inv) / inv;
}

Usage

roundToStep(2.55) = 3
roundToStep(2.55, 0.1) = 2.6
roundToStep(2.55, 0.01) = 2.55

As per the answer already given in comments with the link to http://jsfiddle.net/AsRqx/ , the following one worked perfectly for me.

function C(num)
{
    return +(Math.round(num + "e+2") + "e-2");
}

function N(num, places)
{
    return +(Math.round(num + "e+" + places) + "e-" + places);
}

C(1.005);

N(1.005, 0);
N(1.005, 1); // Up to 1 decimal places
N(1.005, 2); // Up to 2 decimal places
N(1.005, 3); // Up to 3 decimal places

This function works for me. You just pass in the number and the places you want to round and it does what it needs to do easily.

round(source, n) {
  let places = Math.pow(10, n);

  return Math.round(source * places) / places;
}

I just wanted to share my approach, based on previously mentioned answers:

Let's create a function that rounds any given numeric value to a given amount of decimal places:

function roundWDecimals(n, decimals) {
    if (!isNaN(parseFloat(n)) && isFinite(n)) {
        if (typeof(decimals) == typeof(undefined)) {
            decimals = 0;
        }
        var decimalPower = Math.pow(10, decimals);
        return Math.round(parseFloat(n) * decimalPower) / decimalPower;
    }
    return NaN;
}

And introduce a new "round" method for numbers prototype:

Object.defineProperty(Number.prototype, 'round', {
    enumerable: false,
    value: function(decimals) {
        return roundWDecimals(this, decimals);
    }
});

And you can test it:

 function roundWDecimals(n, decimals) { if (!isNaN(parseFloat(n)) && isFinite(n)) { if (typeof(decimals) == typeof(undefined)) { decimals = 0; } var decimalPower = Math.pow(10, decimals); return Math.round(parseFloat(n) * decimalPower) / decimalPower; } return NaN; } Object.defineProperty(Number.prototype, 'round', { enumerable: false, value: function(decimals) { return roundWDecimals(this, decimals); } }); var roundables = [ {num: 10, decimals: 2}, {num: 1.7777777, decimals: 2}, {num: 9.1, decimals: 2}, {num: 55.55, decimals: 1}, {num: 55.549, decimals: 1}, {num: 55, decimals: 0}, {num: 54.9, decimals: 0}, {num: -55.55, decimals: 1}, {num: -55.551, decimals: 1}, {num: -55, decimals: 0}, {num: 1.005, decimals: 2}, {num: 1.005, decimals: 2}, {num: 19.8000000007, decimals: 2}, ], table = '<table border="1"><tr><th>Num</th><th>Decimals</th><th>Result</th></tr>'; $.each(roundables, function() { table += '<tr>'+ '<td>'+this.num+'</td>'+ '<td>'+this.decimals+'</td>'+ '<td>'+this.num.round(this.decimals)+'</td>'+ '</tr>' ; }); table += '</table>'; $('.results').append(table);
 <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script> <div class="results"></div>

A generic answer for all browsers and precisions:

function round(num, places) {
    if(!places) {
        return Math.round(num);
    }

    var val = Math.pow(10, places);
    return Math.round(num * val) / val;
}

round(num, 2);

In the Node.js environment I just use the roundTo module:

const roundTo = require('round-to');
...
roundTo(123.4567, 2);

// 123.46

This answer is more about speed.

var precalculatedPrecisions = [1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10];

function round(num, _prec) {
    _precision = precalculatedPrecisions[_prec]
    return Math.round(num * _precision + 1e-14) / _precision ;
}

jsPerf about this.

I have found this works for all my use cases:

const round = (value, decimalPlaces = 0) => {
    const multiplier = Math.pow(10, decimalPlaces);
    return Math.round(value * multiplier + Number.EPSILON) / multiplier;
};

Keep in mind that is ES6 . An ES5 equivalent would be very easy to code though, so I'm not is going to add it.

A helper function where rounging is your default rounding:

let rounding = 4;

let round = (number) => { let multiply = Math.pow(10,rounding);  return Math.round(number*multiply)/multiply};

console.log(round(0.040579431));

=> 0.0406

There is a solution working for all numbers. Give it a try. The expression is given below.

Math.round((num + 0.00001) * 100) / 100. Try Math.round((1.005 + 0.00001) * 100) / 100 and Math.round((1.0049 + 0.00001) * 100) / 100

I recently tested every possible solution and finally arrived at the output after trying almost 10 times.

Here is a screenshot of issue arose during calculations,

屏幕截图 .

Head over to the amount field. It's returning almost infinite. I gave it a try for the toFixed() method, but it's not working for some cases (ie, try with pi ) and finally derived a solution given above.

This works correctly with positive, negative and large numbers:

function Round(value) {
    const neat = +(Math.abs(value).toPrecision(15));
    const rounded = Math.round(neat * 100) / 100;

    return rounded * Math.sign(value);
}

//0.244 -> 0.24
//0.245 -> 0.25
//0.246 -> 0.25

//-0.244 -> -0.24
//-0.245 -> -0.25
//-0.246 -> -0.25

Here's a modified version of astorije's answer that better supports rounding negative values.

// https://stackoverflow.com/a/21323513/384884
// Modified answer from astorije
function round(value, precision) {
    // Ensure precision exists
    if (typeof precision === "undefined" || +precision === 0) {
        // Just do a regular Math.round
        return Math.round(value);
    }

    // Convert the value and precision variables both to numbers
    value = +value;
    precision = +precision;

    // Ensure the value is a number and that precision is usable
    if (isNaN(value) || !(typeof precision === "number" && precision % 1 === 0)) {
        // Return NaN
        return NaN;
    }

    // Get the sign of value
    var signValue = Math.sign(value);

    // Get the absolute value of value
    value = Math.abs(value);

    // Shift
    value = value.toString().split("e");
    value = Math.round(+(value[0] + "e" + (value[1] ? (+value[1] + precision) : precision)));

    // Shift back
    value = value.toString().split("e");
    value = +(value[0] + "e" + (value[1] ? (+value[1] - precision) : -precision));

    // Apply the sign
    value = value * signValue;

    // Return rounded value
    return value;
}

My solution considers the input as a string and uses the algorithm of "mathematical rounding" to n digits: take n digits, and add one if digit n+1 is 5 or more. It also allows specifying negative digits, for example rounding 123.45 to -1 digits is 120. It works with scientific notation (eg 1.2e-3), as well. I did not measure its speed and I don't think it was the best performance-wise.

function safeRound( numInput, numPrecision ) {
    const strNumber = numInput.toString().replace( 'E', 'e' );
    const bSign = '+-'.indexOf( strNumber[ 0 ] ) !== -1;
    const strSign = bSign  ?  strNumber[ 0 ]  :  '';
    const numSign = strSign !== '-'  ?  +1  :  -1;
    const ixExponent = ( ixFound => ixFound !== -1  ?  ixFound  :  strNumber.length )( strNumber.indexOf( 'e' ) );
    const strExponent = strNumber.substr( ixExponent + 1 );
    const numExponent = ixExponent !== strNumber.length  ?  Number.parseInt( strExponent )  :  0;
    const ixDecimal = ( ixFound => ixFound !== -1  ?  ixFound  :  ixExponent )( strNumber.indexOf( '.' ) );
    const strInteger = strNumber.substring( !bSign  ?  0  :  1, ixDecimal );
    const strFraction = strNumber.substring( ixDecimal + 1, ixExponent );
    
    const numPrecisionAdjusted = numPrecision + numExponent;
    const strIntegerKeep = strInteger.substring( 0, strInteger.length + Math.min( 0, numPrecisionAdjusted ) ) + '0'.repeat( -Math.min( 0, numPrecisionAdjusted ) );
    const strFractionKeep = strFraction.substring( 0, Math.max( 0, numPrecisionAdjusted ) );
    const strRoundedDown = strSign + ( strIntegerKeep === ''  ?  '0'  :  strIntegerKeep ) + ( strFractionKeep === ''  ?  ''  :  '.' + strFractionKeep ) + ( strExponent === ''  ?  ''  :  'e' + strExponent );
    
    const chRoundUp = 0 <= numPrecisionAdjusted  ?  strFraction.substr( numPrecisionAdjusted, 1 )  :  ( '0' + strInteger ).substr( numPrecisionAdjusted, 1 );
    const bRoundUp = '5' <= chRoundUp && chRoundUp <= '9';
    const numRoundUp = bRoundUp  ?  numSign * Math.pow( 10, -numPrecision )  :  0;
    
    return Number.parseFloat( strRoundedDown ) + numRoundUp;
}

function safeRoundTest( numInput, numPrecision, strExpected ) {
    const strActual = safeRound( numInput, numPrecision ).toString();
    const bPassed = strActual === strExpected;
    console.log( 'numInput', numInput, 'numPrecision', numPrecision, 'strExpected', strExpected, 'strActual', strActual, 'bPassed', bPassed );
    return bPassed  ?  0  :  1;
}

function safeRoundTests() {
    let numFailed = 0;
    numFailed += safeRoundTest( 0, 0, '0' );
    numFailed += safeRoundTest( '0', 0, '0' );
    numFailed += safeRoundTest( '0.1', 0, '0' );
    numFailed += safeRoundTest( '+0.1', 0, '0' );
    numFailed += safeRoundTest( '-0.1', 0, '0' );
    numFailed += safeRoundTest( '0.1', 1, '0.1' );
    numFailed += safeRoundTest( '+0.1', 1, '0.1' );
    numFailed += safeRoundTest( '-0.1', 1, '-0.1' );
    numFailed += safeRoundTest( '0.9', 0, '1' );
    numFailed += safeRoundTest( '+0.9', 0, '1' );
    numFailed += safeRoundTest( '-0.9', 0, '-1' );
    numFailed += safeRoundTest( '0.9', 1, '0.9' );
    numFailed += safeRoundTest( '+0.9', 1, '0.9' );
    numFailed += safeRoundTest( '-0.9', 1, '-0.9' );
    numFailed += safeRoundTest( '0.5', 0, '1' );
    numFailed += safeRoundTest( '+0.5', 0, '1' );
    numFailed += safeRoundTest( '-0.5', 0, '-1' );
    numFailed += safeRoundTest( '0.4999', 0, '0' );
    numFailed += safeRoundTest( '+0.4999', 0, '0' );
    numFailed += safeRoundTest( '-0.4999', 0, '0' );
    numFailed += safeRoundTest( '1.005', 2, '1.01' );
    numFailed += safeRoundTest( '1.00499999999', 2, '1' );
    numFailed += safeRoundTest( '012.3456', -4, '0' );
    numFailed += safeRoundTest( '012.3456', -3, '0' );
    numFailed += safeRoundTest( '012.3456', -2, '0' );
    numFailed += safeRoundTest( '012.3456', -1, '10' );
    numFailed += safeRoundTest( '012.3456', 0, '12' );
    numFailed += safeRoundTest( '012.3456', 1, '12.3' );
    numFailed += safeRoundTest( '012.3456', 2, '12.35' );
    numFailed += safeRoundTest( '012.3456', 3, '12.346' );
    numFailed += safeRoundTest( '012.3456', 4, '12.3456' );
    numFailed += safeRoundTest( '012.3456', 5, '12.3456' );
    numFailed += safeRoundTest( '12.', 0, '12' );
    numFailed += safeRoundTest( '.12', 2, '0.12' );
    numFailed += safeRoundTest( '0e0', 0, '0' );
    numFailed += safeRoundTest( '1.2e3', 0, '1200' );
    numFailed += safeRoundTest( '1.2e+3', 0, '1200' );
    numFailed += safeRoundTest( '1.2e-3', 0, '0' );
    numFailed += safeRoundTest( '1.2e-3', 3, '0.001' );
    numFailed += safeRoundTest( '1.2e-3', 4, '0.0012' );
    numFailed += safeRoundTest( '1.2e-3', 5, '0.0012' );
    numFailed += safeRoundTest( '+12.', 0, '12' );
    numFailed += safeRoundTest( '+.12', 2, '0.12' );
    numFailed += safeRoundTest( '+0e0', 0, '0' );
    numFailed += safeRoundTest( '+1.2e3', 0, '1200' );
    numFailed += safeRoundTest( '+1.2e+3', 0, '1200' );
    numFailed += safeRoundTest( '+1.2e-3', 0, '0' );
    numFailed += safeRoundTest( '+1.2e-3', 3, '0.001' );
    numFailed += safeRoundTest( '+1.2e-3', 4, '0.0012' );
    numFailed += safeRoundTest( '+1.2e-3', 5, '0.0012' );
    numFailed += safeRoundTest( '-12.', 0, '-12' );
    numFailed += safeRoundTest( '-.12', 2, '-0.12' );
    numFailed += safeRoundTest( '-0e0', 0, '0' );
    numFailed += safeRoundTest( '-1.2e3', 0, '-1200' );
    numFailed += safeRoundTest( '-1.2e+3', 0, '-1200' );
    numFailed += safeRoundTest( '-1.2e-3', 0, '0' );
    numFailed += safeRoundTest( '-1.2e-3', 3, '-0.001' );
    numFailed += safeRoundTest( '-1.2e-3', 4, '-0.0012' );
    numFailed += safeRoundTest( '-1.2e-3', 5, '-0.0012' );
    numFailed += safeRoundTest( '9876.543e210', 0, '9.876543e+213' );
    numFailed += safeRoundTest( '9876.543e210', -210, '9.877e+213' );
    numFailed += safeRoundTest( '9876.543e210', -209, '9.8765e+213' );
    numFailed += safeRoundTest( '9876.543e+210', 0, '9.876543e+213' );
    numFailed += safeRoundTest( '9876.543e+210', -210, '9.877e+213' );
    numFailed += safeRoundTest( '9876.543e+210', -209, '9.8765e+213' );
    numFailed += safeRoundTest( '9876.543e-210', 213, '9.876543e-207' );
    numFailed += safeRoundTest( '9876.543e-210', 210, '9.877e-207' );
    numFailed += safeRoundTest( '9876.543e-210', 211, '9.8765e-207' );
    console.log( 'numFailed', numFailed );
}

safeRoundTests();

Please use the below function if you don't want to round off.

function ConvertToDecimal(num) {
  num = num.toString(); // If it's not already a String
  num = num.slice(0, (num.indexOf(".")) + 3); // With 3 exposing the hundredths place    
alert('M : ' + Number(num)); // If you need it back as a Number     
}

I tried my very own code. Try this:

function AmountDispalyFormat(value) {
    value = value.toFixed(3);
    var amount = value.toString().split('.');
    var result = 0;
    if (amount.length > 1) {
        var secondValue = parseInt(amount[1].toString().slice(0, 2));
        if (amount[1].toString().length > 2) {
            if (parseInt(amount[1].toString().slice(2, 3)) > 4) {
                secondValue++;
                if (secondValue == 100) {
                    amount[0] = parseInt(amount[0]) + 1;
                    secondValue = 0;
                }
            }
        }

        if (secondValue.toString().length == 1) {
            secondValue = "0" + secondValue;
        }
        result = parseFloat(amount[0] + "." + secondValue);
    } else {
        result = parseFloat(amount);
    }
    return result;
}
number=(parseInt((number +0.005)*100))/100;     

add 0.005 if you want to normal round (2 decimals)

8.123 +0.005=> 8.128*100=>812/100=>8.12   

8.126 +0.005=> 8.131*100=>813/100=>8.13   

Using Brian Ustas's solution:

function roundDecimal(value, precision) {
    var multiplier = Math.pow(10, precision);
    return Math.round(value * multiplier) / multiplier;
}

I created this function, for rounding a number. The value can be a string (ex. '1.005') or a number 1.005 that will be 1 by default and if you specify the decimal to be 2, the result will be 1.01

round(value: string | number, decimals: number | string = "0"): number | null {
    return +( Math.round(Number(value + "e+"+decimals)) + "e-" + decimals);
}

Usage: round(1.005, 2) // 1.01 or Usage: round('1.005', 2) //1.01

The proposed answers, while generally correct, don't consider the precision of the passed in number, which is not expressed as requirement in the original question, but it may be a requirement in case of scientific application where 3 is different from 3.00 (for example) as the number of decimal digits represents the precision of the instrument that have acquired the value or the accuracy of a calculation.

In fact, the proposed answers rounds 3.001 to 3 while by keeping the information about the precision of the number should be 3.00.

Below is a function that takes that in account:

 function roundTo(value, decimal) { let absValue = Math.abs(value); let int = Math.floor(absValue).toString().length; let dec = absValue.toString().length - int; dec -= (Number.isInteger(absValue) ? 0 : 1); return value.toPrecision(int + Math.min(dec, decimal)); }

Use something like this to round up:

num = 519.805;
dp = Math.pow(10, 2);
num = parseFloat(num.toString().concat("1"));
rounded = Math.round((num + Number.EPSILON)* dp)/dp;

As it would deal with numbers falling short where there is only one decimal place to round at the end.

A function with readable options is much more inuitive:

function round_number(options) {
    const places = 10**options.decimal_places;
    const res = Math.round(options.number * places)/places;
    return(res)
}

Usage :

round_number({
    number : 0.5555555555555556,
    decimal_places : 3
})

0.556

Here I used a ternary operator to check if the number has fractional values. If it doesn't then I simply return the number.

Otherwise, I use the Intl.NumberFormat constructor to get the desired value.

Intl.NumberFormat is part of the ECMAScript Internationalization API Specification (ECMA402). It has pretty good browser support , including even IE11, and it is fully supported in Node.js .

 const numberFormatter = new Intl.NumberFormat('en-US', { minimumFractionDigits: 2, maximumFractionDigits: 2, }); function getRoundedNumber(number) { return number.toString().indexOf(".") == -1 ? number : numberFormatter.format(number); } console.log(getRoundedNumber(10)); console.log(getRoundedNumber(1.7777777)); console.log(getRoundedNumber(9.1)); console.log(getRoundedNumber(2.345)); console.log(getRoundedNumber(2.2095)); console.log(getRoundedNumber(2.995));

Instead of using Math.round as @brian-ustas suggest, I prefer the Math.trunc approach to fix the the following situation:

const twoDecimalRound = num => Math.round(num * 100) / 100;
const twoDecimalTrunc = num => Math.trunc(num * 100) / 100;
console.info(twoDecimalRound(79.996)); // not desired output: 80;
console.info(twoDecimalTrunc(79.996)); // desired output: 79.99;
function myFunction(a) {
  return Number(a.toFixed(2));
}

only if necessary You said?

So I suggest You this...

<!doctype html>
<html>
<head>
<meta charset="UTF-8">
<title>roundPrecision</title>
    <script>
        class MyMath{
            constructor(){
            }
            static roundPrecision(number,precision,fillZeros){
                    // number You want to round
                    // precision nb of decimals
                    // fillZeros the number of 0 You want to add IF necessary!
                    // 0 = no fill with zeros.
                    let num = number;
                    let prec = precision;
                    let exp = Math.pow(10,prec);
                    let round = Math.round(number * exp)/exp
                    if (fillZeros>0){
                        return round.toFixed(fillZeros)
                        }
                    return round;
                }
        }
    </script>
</head>

<body>
    <p id="field1"></p>
    <p id="field2"></p>
    <script>
        document.getElementById("field1").innerHTML = MyMath.roundPrecision(5,2,3);
        document.getElementById("field2").innerHTML = MyMath.roundPrecision(Math.PI,2,4);
    </script>
</body>
</html>

const formattedNumber = Math.round(number * 100) / 100;

A proper way to avoid the binary issues with rounding to an arbitrary number of places would be:

function roundToDigits(number, digits) {
  return Number(Math.round(Number(number + 'e' + digits)) + 'e-' + digits);
}

A way to fix the toFixed() function would be:

Number.toFixed = (prototype => {
    const toFixed = prototype.toFixed;

    // noinspection JSVoidFunctionReturnValueUsed
    return function (fractionDigits) {
        const str = this.toString();
        const number = str.indexOf('.') === -1 ? this : Number(str + '1');
        return toFixed.call(number, fractionDigits);
    };
})(Number.prototype);

Node.js

This did the trick for me on Node.js in a matter of seconds:

npm install math

Source: math.js, Basic usage

如果您在项目中使用 Lodash,那么只需执行以下操作:

 _.round(value, 2);

I still don't think anyone gave him the answer to how to only do the rounding if needed. The easiest way I see to do it is to check if there is even a decimal in the number, like so:

var num = 3.21;
if ( (num+"").indexOf('.') >= 0 ) { //at least assert to string first...
    // whatever code you decide to use to round
}

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM