繁体   English   中英

C#编译器不限制浮点文字的小数部分的位数

[英]C# compiler does not limit the number of digits of fractional part of a floating-point literal

这仅用于学术目的。

我注意到对于整数文字,我们可以声明最多18446744073709551615 ,即2^64-1ulong.MaxValue 定义大于此值会产生编译时错误。

对于浮点文字,我们可以用999...9999重复308次)的整数部分声明它们。 再次使用更多数字声明整数部分会产生编译时错误。 我感兴趣的一件事是编译器似乎允许我们指定小数部分无限数字的位数。 实际上,小数部分的无限数字位数没有意义。

问题:

  1. 是否有一个常量表示C#编译器内部定义的最大位数,用于浮点数的小数部分?

  2. 如果存在这样的常量,当用户指定超出其限制的小数部分时,为什么C#编译器不会抛出编译时错误?

最小工作示例1

namespace FloatingPoint
{
    class Program
    {
        static void Main(string[] args)
        {
            const ulong @ulong = 18446744073709551615;
            const double @double = 99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999.9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999;

        }
    }
}

最小工作示例2

using System;

namespace FloatingPoint
{
    class Program
    {
        static void Main(string[] args)
        {

            const double x01 = 0.9;
            const double x02 = 0.99;
            const double x03 = 0.999;
            const double x04 = 0.9999;

            const double x05 = 0.99999;
            const double x06 = 0.999999;
            const double x07 = 0.9999999;
            const double x08 = 0.99999999;

            const double x09 = 0.999999999;
            const double x10 = 0.9999999999;
            const double x11 = 0.99999999999;
            const double x12 = 0.999999999999;

            const double x13 = 0.9999999999999;
            const double x14 = 0.99999999999999;
            const double x15 = 0.999999999999999;
            const double x16 = 0.9999999999999999;

            const double x17 = 0.99999999999999999;
            const double x18 = 0.999999999999999999;
            const double x19 = 0.9999999999999999999;
            const double x20 = 0.99999999999999999999;

            Console.WriteLine(x01);
            Console.WriteLine(x02);
            Console.WriteLine(x03);
            Console.WriteLine(x04);
            Console.WriteLine(x05);
            Console.WriteLine(x06);
            Console.WriteLine(x07);
            Console.WriteLine(x08);
            Console.WriteLine(x09);
            Console.WriteLine(x10);
            Console.WriteLine(x11);
            Console.WriteLine(x12);
            Console.WriteLine(x13);
            Console.WriteLine(x14);
            Console.WriteLine(x15);
            Console.WriteLine(x16);
            Console.WriteLine(x17);
            Console.WriteLine(x18);
            Console.WriteLine(x19);
            Console.WriteLine(x20);

        }
    }
}

/* output:

0.9
0.99
0.999
0.9999
0.99999
0.999999
0.9999999
0.99999999
0.999999999
0.9999999999
0.99999999999
0.999999999999
0.9999999999999
0.99999999999999
0.999999999999999
1
1
1
1
1
*/

IL:

.method private hidebysig static void  Main(string[] args) cil managed
{
  .entrypoint
  // Code size       302 (0x12e)
  .maxstack  1
  IL_0000:  nop
  IL_0001:  ldc.r8     0.90000000000000002
  IL_000a:  call       void [mscorlib]System.Console::WriteLine(float64)
  IL_000f:  nop
  IL_0010:  ldc.r8     0.98999999999999999
  IL_0019:  call       void [mscorlib]System.Console::WriteLine(float64)
  IL_001e:  nop
  IL_001f:  ldc.r8     0.999
  IL_0028:  call       void [mscorlib]System.Console::WriteLine(float64)
  IL_002d:  nop
  IL_002e:  ldc.r8     0.99990000000000001
  IL_0037:  call       void [mscorlib]System.Console::WriteLine(float64)
  IL_003c:  nop
  IL_003d:  ldc.r8     0.99999000000000005
  IL_0046:  call       void [mscorlib]System.Console::WriteLine(float64)
  IL_004b:  nop
  IL_004c:  ldc.r8     0.99999899999999997
  IL_0055:  call       void [mscorlib]System.Console::WriteLine(float64)
  IL_005a:  nop
  IL_005b:  ldc.r8     0.99999990000000005
  IL_0064:  call       void [mscorlib]System.Console::WriteLine(float64)
  IL_0069:  nop
  IL_006a:  ldc.r8     0.99999998999999995
  IL_0073:  call       void [mscorlib]System.Console::WriteLine(float64)
  IL_0078:  nop
  IL_0079:  ldc.r8     0.99999999900000003
  IL_0082:  call       void [mscorlib]System.Console::WriteLine(float64)
  IL_0087:  nop
  IL_0088:  ldc.r8     0.99999999989999999
  IL_0091:  call       void [mscorlib]System.Console::WriteLine(float64)
  IL_0096:  nop
  IL_0097:  ldc.r8     0.99999999999
  IL_00a0:  call       void [mscorlib]System.Console::WriteLine(float64)
  IL_00a5:  nop
  IL_00a6:  ldc.r8     0.99999999999900002
  IL_00af:  call       void [mscorlib]System.Console::WriteLine(float64)
  IL_00b4:  nop
  IL_00b5:  ldc.r8     0.99999999999989997
  IL_00be:  call       void [mscorlib]System.Console::WriteLine(float64)
  IL_00c3:  nop
  IL_00c4:  ldc.r8     0.99999999999999001
  IL_00cd:  call       void [mscorlib]System.Console::WriteLine(float64)
  IL_00d2:  nop
  IL_00d3:  ldc.r8     0.999999999999999
  IL_00dc:  call       void [mscorlib]System.Console::WriteLine(float64)
  IL_00e1:  nop
  IL_00e2:  ldc.r8     0.99999999999999989
  IL_00eb:  call       void [mscorlib]System.Console::WriteLine(float64)
  IL_00f0:  nop
  IL_00f1:  ldc.r8     1.
  IL_00fa:  call       void [mscorlib]System.Console::WriteLine(float64)
  IL_00ff:  nop
  IL_0100:  ldc.r8     1.
  IL_0109:  call       void [mscorlib]System.Console::WriteLine(float64)
  IL_010e:  nop
  IL_010f:  ldc.r8     1.
  IL_0118:  call       void [mscorlib]System.Console::WriteLine(float64)
  IL_011d:  nop
  IL_011e:  ldc.r8     1.
  IL_0127:  call       void [mscorlib]System.Console::WriteLine(float64)
  IL_012c:  nop
  IL_012d:  ret
} // end of method Program::Main
  1. 是的,但它们不是十进制数字
  2. 当规范为十进制且表示为二进制时,超出精确表示它们的能力的小数部分的规范是容易的。 0.3已经需要近似值。

在大多数情况下,浮点数无论如何都将是所需实际值的近似值(除非它恰好是可以精确表示的值之一)。 此外,近似是明确定义的:简单地舍入到最接近的可表示值。 另一方面,没有有用的方法将整数(或实数的整数部分)舍入到最接近的可表示值。 例如,将2 ^ 100舍入到2 ^ 64-1是什么意思?

我不知道浮点文字中允许的小数位数有任何限制,虽然测试这样的限制是否确实存在应该相对简单,但如果确实存在,它可能更多地取决于编译器内部而不是特定的任何内容。无论如何,要浮点值。 但是我认为值得思考是否有必要限制文字中的小数位数。 我认为这里的关键点是无法表示的数字之间的差异,因为它们超出了双数据类型支持的范围 (由编译器选取),以及无法在数据类型中准确表示的数字。

确实有许多十进制数字不能完全表示为双精度数(例如0.1),但编译器默默地接受它们,将它们转换为最接近的可表示值,如果不这样做,则会带来很大的不便。 那么为什么一个超过小数的文字应该被区别对待呢?

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM