繁体   English   中英

使用 sklearn.AgglomerativeClustering 绘制树状图

[英]Plot dendrogram using sklearn.AgglomerativeClustering

我正在尝试使用AgglomerativeClustering提供的children_属性构建树状图,但到目前为止我不走运。 我不能使用scipy.cluster因为在提供合并聚类scipy缺乏一些选项,对我很重要(如指定集群的量的选项)。 如果有任何建议,我将不胜感激。

    import sklearn.cluster
    clstr = cluster.AgglomerativeClustering(n_clusters=2)
    clusterer.children_

这是一个简单的函数,用于从 sklearn 中获取层次聚类模型并使用 scipy dendrogram函数绘制它。 似乎 sklearn 中通常不直接支持绘图函数。 您可以在此处找到与此plot_dendrogram代码片段的拉取请求相关的有趣讨论。

我想澄清的是你描述(定义聚类数)的使用情况是在SciPy的可用:您使用SciPy的公司进行聚类后, linkage你可以减少层次您想要使用任何群集的数量fcluster与群集的数量在t参数和criterion='maxclust'参数中指定。

请改用凝聚聚类的 scipy 实现。 这是一个例子。

from scipy.cluster.hierarchy import dendrogram, linkage

data = [[0., 0.], [0.1, -0.1], [1., 1.], [1.1, 1.1]]

Z = linkage(data)

dendrogram(Z)  

你可以找到文档linkage 在这里和文档dendrogram 这里

前段时间我遇到了完全相同的问题。 我设法绘制该死的树状图的方法是使用软件包ete3 这个包能够灵活地绘制具有各种选项的树。 唯一的困难是要转换sklearnchildren_输出到Newick树格式,可以阅读和理解ete3 此外,我需要手动计算树突的跨度,因为该信息未随children_提供。 这是我使用的代码片段。 它计算 Newick 树,然后显示ete3树数据结构。 有关如何绘图的更多详细信息,请查看此处

import numpy as np
from sklearn.cluster import AgglomerativeClustering
import ete3

def build_Newick_tree(children,n_leaves,X,leaf_labels,spanner):
    """
    build_Newick_tree(children,n_leaves,X,leaf_labels,spanner)

    Get a string representation (Newick tree) from the sklearn
    AgglomerativeClustering.fit output.

    Input:
        children: AgglomerativeClustering.children_
        n_leaves: AgglomerativeClustering.n_leaves_
        X: parameters supplied to AgglomerativeClustering.fit
        leaf_labels: The label of each parameter array in X
        spanner: Callable that computes the dendrite's span

    Output:
        ntree: A str with the Newick tree representation

    """
    return go_down_tree(children,n_leaves,X,leaf_labels,len(children)+n_leaves-1,spanner)[0]+';'

def go_down_tree(children,n_leaves,X,leaf_labels,nodename,spanner):
    """
    go_down_tree(children,n_leaves,X,leaf_labels,nodename,spanner)

    Iterative function that traverses the subtree that descends from
    nodename and returns the Newick representation of the subtree.

    Input:
        children: AgglomerativeClustering.children_
        n_leaves: AgglomerativeClustering.n_leaves_
        X: parameters supplied to AgglomerativeClustering.fit
        leaf_labels: The label of each parameter array in X
        nodename: An int that is the intermediate node name whos
            children are located in children[nodename-n_leaves].
        spanner: Callable that computes the dendrite's span

    Output:
        ntree: A str with the Newick tree representation

    """
    nodeindex = nodename-n_leaves
    if nodename<n_leaves:
        return leaf_labels[nodeindex],np.array([X[nodeindex]])
    else:
        node_children = children[nodeindex]
        branch0,branch0samples = go_down_tree(children,n_leaves,X,leaf_labels,node_children[0])
        branch1,branch1samples = go_down_tree(children,n_leaves,X,leaf_labels,node_children[1])
        node = np.vstack((branch0samples,branch1samples))
        branch0span = spanner(branch0samples)
        branch1span = spanner(branch1samples)
        nodespan = spanner(node)
        branch0distance = nodespan-branch0span
        branch1distance = nodespan-branch1span
        nodename = '({branch0}:{branch0distance},{branch1}:{branch1distance})'.format(branch0=branch0,branch0distance=branch0distance,branch1=branch1,branch1distance=branch1distance)
        return nodename,node

def get_cluster_spanner(aggClusterer):
    """
    spanner = get_cluster_spanner(aggClusterer)

    Input:
        aggClusterer: sklearn.cluster.AgglomerativeClustering instance

    Get a callable that computes a given cluster's span. To compute
    a cluster's span, call spanner(cluster)

    The cluster must be a 2D numpy array, where the axis=0 holds
    separate cluster members and the axis=1 holds the different
    variables.

    """
    if aggClusterer.linkage=='ward':
        if aggClusterer.affinity=='euclidean':
            spanner = lambda x:np.sum((x-aggClusterer.pooling_func(x,axis=0))**2)
    elif aggClusterer.linkage=='complete':
        if aggClusterer.affinity=='euclidean':
            spanner = lambda x:np.max(np.sum((x[:,None,:]-x[None,:,:])**2,axis=2))
        elif aggClusterer.affinity=='l1' or aggClusterer.affinity=='manhattan':
            spanner = lambda x:np.max(np.sum(np.abs(x[:,None,:]-x[None,:,:]),axis=2))
        elif aggClusterer.affinity=='l2':
            spanner = lambda x:np.max(np.sqrt(np.sum((x[:,None,:]-x[None,:,:])**2,axis=2)))
        elif aggClusterer.affinity=='cosine':
            spanner = lambda x:np.max(np.sum((x[:,None,:]*x[None,:,:]))/(np.sqrt(np.sum(x[:,None,:]*x[:,None,:],axis=2,keepdims=True))*np.sqrt(np.sum(x[None,:,:]*x[None,:,:],axis=2,keepdims=True))))
        else:
            raise AttributeError('Unknown affinity attribute value {0}.'.format(aggClusterer.affinity))
    elif aggClusterer.linkage=='average':
        if aggClusterer.affinity=='euclidean':
            spanner = lambda x:np.mean(np.sum((x[:,None,:]-x[None,:,:])**2,axis=2))
        elif aggClusterer.affinity=='l1' or aggClusterer.affinity=='manhattan':
            spanner = lambda x:np.mean(np.sum(np.abs(x[:,None,:]-x[None,:,:]),axis=2))
        elif aggClusterer.affinity=='l2':
            spanner = lambda x:np.mean(np.sqrt(np.sum((x[:,None,:]-x[None,:,:])**2,axis=2)))
        elif aggClusterer.affinity=='cosine':
            spanner = lambda x:np.mean(np.sum((x[:,None,:]*x[None,:,:]))/(np.sqrt(np.sum(x[:,None,:]*x[:,None,:],axis=2,keepdims=True))*np.sqrt(np.sum(x[None,:,:]*x[None,:,:],axis=2,keepdims=True))))
        else:
            raise AttributeError('Unknown affinity attribute value {0}.'.format(aggClusterer.affinity))
    else:
        raise AttributeError('Unknown linkage attribute value {0}.'.format(aggClusterer.linkage))
    return spanner

clusterer = AgglomerativeClustering(n_clusters=2,compute_full_tree=True) # You can set compute_full_tree to 'auto', but I left it this way to get the entire tree plotted
clusterer.fit(X) # X for whatever you want to fit
spanner = get_cluster_spanner(clusterer)
newick_tree = build_Newick_tree(clusterer.children_,clusterer.n_leaves_,X,leaf_labels,spanner) # leaf_labels is a list of labels for each entry in X
tree = ete3.Tree(newick_tree)
tree.show()

对于那些愿意离开 Python 并使用强大的 D3 库的人来说,使用d3.cluster() (或者,我猜是d3.tree() )API 来实现一个不错的、可定制的结果并不是特别困难。

有关演示,请参阅jsfiddle

幸运的是children_数组很容易作为 JS 数组运行,唯一的中间步骤是使用d3.stratify()将其转换为分层表示。 具体来说,我们需要每个节点都有一个id和一个parentId

var N = 272;  // Your n_samples/corpus size.
var root = d3.stratify()
  .id((d,i) => i + N)
  .parentId((d, i) => {
    var parIndex = data.findIndex(e => e.includes(i + N));
    if (parIndex < 0) {
      return; // The root should have an undefined parentId.
    }
    return parIndex + N;
  })(data); // Your children_

由于findIndex行,您最终在这里至少有 O(n^2) 行为,但在您的 n_samples 变得巨大之前这可能无关紧要,在这种情况下,您可以预先计算更有效的索引。

除此之外,它几乎是d3.cluster()d3.cluster() 请参阅 mbostock 的规范块或我的 JSFiddle。

注意对于我的用例,仅显示非叶节点就足够了; 可视化样本/叶子有点棘手,因为这些可能并不都明确地在children_数组中。

来自官方文档

import numpy as np

from matplotlib import pyplot as plt
from scipy.cluster.hierarchy import dendrogram
from sklearn.datasets import load_iris
from sklearn.cluster import AgglomerativeClustering


def plot_dendrogram(model, **kwargs):
    # Create linkage matrix and then plot the dendrogram

    # create the counts of samples under each node
    counts = np.zeros(model.children_.shape[0])
    n_samples = len(model.labels_)
    for i, merge in enumerate(model.children_):
        current_count = 0
        for child_idx in merge:
            if child_idx < n_samples:
                current_count += 1  # leaf node
            else:
                current_count += counts[child_idx - n_samples]
        counts[i] = current_count

    linkage_matrix = np.column_stack([model.children_, model.distances_,
                                      counts]).astype(float)

    # Plot the corresponding dendrogram
    dendrogram(linkage_matrix, **kwargs)


iris = load_iris()
X = iris.data

# setting distance_threshold=0 ensures we compute the full tree.
model = AgglomerativeClustering(distance_threshold=0, n_clusters=None)

model = model.fit(X)
plt.title('Hierarchical Clustering Dendrogram')
# plot the top three levels of the dendrogram
plot_dendrogram(model, truncate_mode='level', p=3)
plt.xlabel("Number of points in node (or index of point if no parenthesis).")
plt.show()

请注意,当前(从 scikit-learn v0.23 开始)仅在使用distance_threshold参数调用 AgglomerativeClustering 时才有效,但从 v0.24 开始,您将能够通过将compute_distances设置为 true 来强制计算距离( 请参阅 nightly build文档)。

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM