繁体   English   中英

C++:从离散分布中采样而无需替换

[英]C++: Sampling from discrete distribution without replacement

我想从不带替换的离散分布中采样(即不重复)。

使用函数distinct_distribution ,可以进行替换采样。 并且,通过这个函数,我以一种非常粗略的方式实现了无替换采样:

#include <iostream>
#include <random>
#include <vector>
#include <array>

int main()
{
    const int sampleSize = 8;   // Size of the sample
    std::vector<double> weights = {2,2,1,1,2,2,1,1,2,2}; // 10 possible outcome with different weights

    std::random_device rd;
    std::mt19937 generator(rd());

    /// WITH REPLACEMENT

    std::discrete_distribution<int> distribution(weights.begin(), weights.end()); 

    std::array<int, 10> p ={};
    for(int i=0; i<sampleSize; ++i){
        int number = distribution(generator);
        ++p[number];
    }

    std::cout << "Discrete_distribution with replacement:" << std::endl;
    for (int i=0; i<10; ++i)
    std::cout << i << ": " << std::string(p[i],'*') << std::endl;


    /// WITHOUT REPLACEMENT

    p = {};
    for(int i=0; i<sampleSize; ++i){
        std::discrete_distribution<int> distribution(weights.begin(), weights.end()); 
        int number = distribution(generator);
        weights[number] = 0; // the weight associate to the sampled value is set to 0
        ++p[number];
    }

    std::cout << "Discrete_distribution without replacement:" << std::endl;
    for (int i=0; i<10; ++i)
    std::cout << i << ": " << std::string(p[i],'*') << std::endl;


    return 0;
}

您是否曾经编码过这种无需替换的采样? 可能以更优化的方式?

谢谢你。

干杯,

助教

这个解决方案可能会更短一些。 不幸的是,它需要在每一步都创建一个discrete_distribution<>对象,这在绘制大量样本时可能会令人望而却步。

#include <iostream>
#include <boost/random/discrete_distribution.hpp>
#include <boost/random/mersenne_twister.hpp>

using namespace boost::random;

int main(int, char**) {
    std::vector<double> w = { 2, 2, 1, 1, 2, 2, 1, 1, 2, 2 };
    discrete_distribution<> dist(w);
    int n = 10;
    boost::random::mt19937 gen;
    std::vector<int> samples;
    for (auto i = 0; i < n; i++) {
        samples.push_back(dist(gen));
        w[*samples.rbegin()] = 0;
        dist = discrete_distribution<>(w);
    }
    for (auto iter : samples) {
        std::cout << iter << " ";
    }

    return 0;
}

改进的答案:

在此站点上仔细寻找类似的问题(无需替换的快速加权采样)后,我发现了一种非常简单的无需替换的加权采样算法,只是在 C++ 中实现有点复杂。 请注意,这不是最有效的算法,但在我看来它是最容易实现的算法。

https://doi.org/10.1016/j.ipl.2005.11.003中详细描述了该方法。

特别是,如果样本量远小于基本总体,则效率不高。

#include <iostream>
#include <iterator>
#include <boost/random/uniform_01.hpp>
#include <boost/random/mersenne_twister.hpp>

using namespace boost::random;

int main(int, char**) {
    std::vector<double> w = { 2, 2, 1, 1, 2, 2, 1, 1, 2, 10 };
    uniform_01<> dist;
    boost::random::mt19937 gen;
    std::vector<double> vals;
    std::generate_n(std::back_inserter(vals), w.size(), [&dist,&gen]() { return dist(gen); });
    std::transform(vals.begin(), vals.end(), w.begin(), vals.begin(), [&](auto r, auto w) { return std::pow(r, 1. / w); });
    std::vector<std::pair<double, int>> valIndices;
    size_t index = 0;
    std::transform(vals.begin(), vals.end(), std::back_inserter(valIndices), [&index](auto v) { return std::pair<double,size_t>(v,index++); });
    std::sort(valIndices.begin(), valIndices.end(), [](auto x, auto y) { return x.first > y.first; });
    std::vector<int> samples;
    std::transform(valIndices.begin(), valIndices.end(), std::back_inserter(samples), [](auto v) { return v.second; });

    for (auto iter : samples) {
        std::cout << iter << " ";
    }

    return 0;
}

更简单的回答

我只是删除了一些 STL 函数并用简单的 for 循环替换了它。

#include <iostream>
#include <iterator>
#include <boost/random/uniform_01.hpp>
#include <boost/random/mersenne_twister.hpp>
#include <algorithm>

using namespace boost::random;

int main(int, char**) {
    std::vector<double> w = { 2, 2, 1, 1, 2, 2, 1, 1, 2, 1000 };
    uniform_01<> dist;
    boost::random::mt19937 gen(342575235);
    std::vector<double> vals;
    for (auto iter : w) {
        vals.push_back(std::pow(dist(gen), 1. / iter));
    }
    // Sorting vals, but retain the indices. 
    // There is unfortunately no easy way to do this with STL.
    std::vector<std::pair<int, double>> valsWithIndices;
    for (size_t iter = 0; iter < vals.size(); iter++) {
        valsWithIndices.emplace_back(iter, vals[iter]);
    }
    std::sort(valsWithIndices.begin(), valsWithIndices.end(), [](auto x, auto y) {return x.second > y.second; });

    std::vector<size_t> samples;
    int sampleSize = 8;
    for (auto iter = 0; iter < sampleSize; iter++) {
        samples.push_back(valsWithIndices[iter].first);
    }
    for (auto iter : samples) {
        std::cout << iter << " ";
    }

    return 0;
}

Aleph0 的现有答案在我测试过的答案中效果最好。 我尝试对原始解决方案(由 Aleph0 添加的解决方案)和新解决方案进行基准测试,其中只有在现有解决方案超过 50% 的已添加项目时才创建新的discrete_distribution分布(当分布产生样本中已有的项目时重新绘制)。

我用样本大小==人口大小进行了测试,权重等于指数。 我认为问题中的原始解决方案在O(n^2)运行,我的新解决方案在O(n logn)中运行,而论文中的一个似乎在O(n)运行。

-------------------------------------------------------------
Benchmark                   Time             CPU   Iterations
-------------------------------------------------------------
BM_Reuse             25252721 ns     25251731 ns           26
BM_NewDistribution   17338706125 ns  17313620000 ns         1
BM_SomePaper         6789525 ns      6779400 ns           100

代码:

#include <array>
#include <benchmark/benchmark.h>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/uniform_01.hpp>
#include <iostream>
#include <iterator>
#include <random>
#include <vector>

const int sampleSize = 20000;

using namespace boost::random;

static void BM_ReuseDistribution(benchmark::State &state) {
  std::vector<double> weights;
  weights.resize(sampleSize);

  for (auto _ : state) {
    for (int i = 0; i < sampleSize; i++) {
      weights[i] = i + 1;
    }
    std::random_device rd;
    std::mt19937 generator(rd());
    int o[sampleSize];
    std::discrete_distribution<int> distribution(weights.begin(),
                                                 weights.end());
    int numAdded = 0;
    int distSize = sampleSize;
    for (int i = 0; i < sampleSize; ++i) {
      if (numAdded > distSize / 2) {
        distSize -= numAdded;
        numAdded = 0;
        distribution =
            std::discrete_distribution<int>(weights.begin(), weights.end());
      }

      int number = distribution(generator);
      if (!weights[number]) {
        i -= 1;
        continue;
      } else {
        weights[number] = 0;
        o[i] = number;
        numAdded += 1;
      }
    }
  }
}

BENCHMARK(BM_ReuseDistribution);

static void BM_NewDistribution(benchmark::State &state) {
  std::vector<double> weights;
  weights.resize(sampleSize);

  for (auto _ : state) {
    for (int i = 0; i < sampleSize; i++) {
      weights[i] = i + 1;
    }
    std::random_device rd;
    std::mt19937 generator(rd());
    int o[sampleSize];

    for (int i = 0; i < sampleSize; ++i) {
      std::discrete_distribution<int> distribution(weights.begin(),
                                                   weights.end());
      int number = distribution(generator);
      weights[number] = 0;
      o[i] = number;
    }
  }
}

BENCHMARK(BM_NewDistribution);

static void BM_SomePaper(benchmark::State &state) {
  std::vector<double> w;
   w.resize(sampleSize);
  for (auto _ : state) {
    for (int i = 0; i < sampleSize; i++) {
      w[i] = i + 1;
    }

    uniform_01<> dist;
    boost::random::mt19937 gen;
    std::vector<double> vals;
    std::generate_n(std::back_inserter(vals), w.size(),
                    [&dist, &gen]() { return dist(gen); });
    std::transform(vals.begin(), vals.end(), w.begin(), vals.begin(),
                   [&](auto r, auto w) { return std::pow(r, 1. / w); });
    std::vector<std::pair<double, int>> valIndices;
    size_t index = 0;
    std::transform(
        vals.begin(), vals.end(), std::back_inserter(valIndices),
        [&index](auto v) { return std::pair<double, size_t>(v, index++); });
    std::sort(valIndices.begin(), valIndices.end(),
              [](auto x, auto y) { return x.first > y.first; });
    std::vector<int> samples;
    std::transform(valIndices.begin(), valIndices.end(),
                   std::back_inserter(samples),
                   [](auto v) { return v.second; });
  }
}

BENCHMARK(BM_SomePaper);

BENCHMARK_MAIN();

感谢您的问题和其他人的好回答,我和您遇到了同样的问题。 我认为你不需要每次都发布新的发行版,而不是

dist.param({ wts.begin(), wts.end() });

完整代码如下:

//STL改进方案
#include <iostream>
#include <vector>
#include <random>
#include <iomanip>
#include <map>
#include <set>

int main()
{
//随机数引擎采用默认引擎
std::default_random_engine rng;

//随机数引擎采用设备熵值保证随机性
auto gen = std::mt19937{ std::random_device{}() };

std::vector<int> wts(24); //存储权重值

std::vector<int> in(24);  //存储总体

std::set<int> out;  //存储抽样结果

std::map<int, int> count;  //输出计数

int sampleCount = 0;  //抽样次数计数

int index = 0;  //抽取的下标

int sampleSize = 24;  //抽取样本的数量

int sampleTimes = 100000;  //抽取样本的次数

//权重赋值
for (int i = 0; i < 24; i++)
{
    wts.at(i) = 48 - 2 * i;
}

//总体赋值并输出
std::cout << "总体为24个:" << std::endl;

//赋值
for (int i = 0; i < 24; i++)
{
    in.at(i) = i + 1;

    std::cout << in.at(i) << " ";
}

std::cout << std::endl;

//产生按照给定权重的离散分布
std::discrete_distribution<size_t> dist{ wts.begin(), wts.end() };

auto probs = dist.probabilities(); // 返回概率计算结果

//输出概率计算结果
std::cout << "总体中各数据的权重为:" << std::endl;

std::copy(probs.begin(), probs.end(), std::ostream_iterator<double>
{ std::cout << std::fixed << std::setprecision(5), “ ”});

std::cout << std::endl << std::endl;

//==========抽样测试==========
for (size_t j = 0; j < sampleTimes; j++)
{
    index = dist(gen);

    //std::cout << index << “ ”;  //输出抽样结果

    count[index] += 1;  //抽样结果计数        
}

double sum = 0.0;  //用于概率求和

//输出抽样结果
std::cout << "总共抽样" << sampleTimes << "次," << "各下标的频数及频率为:" << std::endl;

for (size_t i = 0; i < 24; i++)
{
    std::cout << i << "共有" << count[i] << "个   频率为:" << count[i] / double(sampleTimes) << std::endl;

    sum += count[i] / double(sampleTimes);
}

std::cout << "总频率为:" << sum << std::endl << std::endl;  //输出总概率
//==========抽样测试==========

//从总体中抽样放入集合中,直至集合大小达到样本数
while (out.size() < sampleSize - 1)
{
    index = dist(gen);  //抽取下标

    out.insert(index);  //插入集合

    sampleCount += 1;   //抽样次数增加1

    wts.at(index) = 0; //将抽取到的下标索引的权重设置为0
    
    dist.param({ wts.begin(), wts.end() });

    probs = dist.probabilities(); // 返回概率计算结果

    //输出概率计算结果
    std::cout << "总体中各数据的权重为:" << std::endl;

    std::copy(probs.begin(), probs.end(), std::ostream_iterator<double>
    { std::cout << std::fixed << std::setprecision(5), “ ”});

    std::cout << std::endl << std::endl;
}
//最后一次抽取,单独出来是避免将所有权重都为0,的权重数组赋值给离散分布dist,避免报错
index = dist(gen);  //抽取下标

out.insert(index);  //插入集合

sampleCount += 1;   //抽样次数增加1

//输出抽样结果
std::cout << "从总体中抽取的" << sampleSize << "个样本的下标索引为:" << std::endl;

for (auto iter : out)
{
    std::cout << iter << “-”;
}

std::cout << std::endl;

//输出抽样次数
std::cout << "抽样次数为:" << sampleCount << std::endl;

out.clear(); //清空输出集合,为下次抽样做准备

std::cin.get(); //保留控制台窗口
return 0;
}

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM