簡體   English   中英

C++:從離散分布中采樣而無需替換

[英]C++: Sampling from discrete distribution without replacement

我想從不帶替換的離散分布中采樣(即不重復)。

使用函數distinct_distribution ,可以進行替換采樣。 並且,通過這個函數,我以一種非常粗略的方式實現了無替換采樣:

#include <iostream>
#include <random>
#include <vector>
#include <array>

int main()
{
    const int sampleSize = 8;   // Size of the sample
    std::vector<double> weights = {2,2,1,1,2,2,1,1,2,2}; // 10 possible outcome with different weights

    std::random_device rd;
    std::mt19937 generator(rd());

    /// WITH REPLACEMENT

    std::discrete_distribution<int> distribution(weights.begin(), weights.end()); 

    std::array<int, 10> p ={};
    for(int i=0; i<sampleSize; ++i){
        int number = distribution(generator);
        ++p[number];
    }

    std::cout << "Discrete_distribution with replacement:" << std::endl;
    for (int i=0; i<10; ++i)
    std::cout << i << ": " << std::string(p[i],'*') << std::endl;


    /// WITHOUT REPLACEMENT

    p = {};
    for(int i=0; i<sampleSize; ++i){
        std::discrete_distribution<int> distribution(weights.begin(), weights.end()); 
        int number = distribution(generator);
        weights[number] = 0; // the weight associate to the sampled value is set to 0
        ++p[number];
    }

    std::cout << "Discrete_distribution without replacement:" << std::endl;
    for (int i=0; i<10; ++i)
    std::cout << i << ": " << std::string(p[i],'*') << std::endl;


    return 0;
}

您是否曾經編碼過這種無需替換的采樣? 可能以更優化的方式?

謝謝你。

干杯,

助教

這個解決方案可能會更短一些。 不幸的是,它需要在每一步都創建一個discrete_distribution<>對象,這在繪制大量樣本時可能會令人望而卻步。

#include <iostream>
#include <boost/random/discrete_distribution.hpp>
#include <boost/random/mersenne_twister.hpp>

using namespace boost::random;

int main(int, char**) {
    std::vector<double> w = { 2, 2, 1, 1, 2, 2, 1, 1, 2, 2 };
    discrete_distribution<> dist(w);
    int n = 10;
    boost::random::mt19937 gen;
    std::vector<int> samples;
    for (auto i = 0; i < n; i++) {
        samples.push_back(dist(gen));
        w[*samples.rbegin()] = 0;
        dist = discrete_distribution<>(w);
    }
    for (auto iter : samples) {
        std::cout << iter << " ";
    }

    return 0;
}

改進的答案:

在此站點上仔細尋找類似的問題(無需替換的快速加權采樣)后,我發現了一種非常簡單的無需替換的加權采樣算法,只是在 C++ 中實現有點復雜。 請注意,這不是最有效的算法,但在我看來它是最容易實現的算法。

https://doi.org/10.1016/j.ipl.2005.11.003中詳細描述了該方法。

特別是,如果樣本量遠小於基本總體,則效率不高。

#include <iostream>
#include <iterator>
#include <boost/random/uniform_01.hpp>
#include <boost/random/mersenne_twister.hpp>

using namespace boost::random;

int main(int, char**) {
    std::vector<double> w = { 2, 2, 1, 1, 2, 2, 1, 1, 2, 10 };
    uniform_01<> dist;
    boost::random::mt19937 gen;
    std::vector<double> vals;
    std::generate_n(std::back_inserter(vals), w.size(), [&dist,&gen]() { return dist(gen); });
    std::transform(vals.begin(), vals.end(), w.begin(), vals.begin(), [&](auto r, auto w) { return std::pow(r, 1. / w); });
    std::vector<std::pair<double, int>> valIndices;
    size_t index = 0;
    std::transform(vals.begin(), vals.end(), std::back_inserter(valIndices), [&index](auto v) { return std::pair<double,size_t>(v,index++); });
    std::sort(valIndices.begin(), valIndices.end(), [](auto x, auto y) { return x.first > y.first; });
    std::vector<int> samples;
    std::transform(valIndices.begin(), valIndices.end(), std::back_inserter(samples), [](auto v) { return v.second; });

    for (auto iter : samples) {
        std::cout << iter << " ";
    }

    return 0;
}

更簡單的回答

我只是刪除了一些 STL 函數並用簡單的 for 循環替換了它。

#include <iostream>
#include <iterator>
#include <boost/random/uniform_01.hpp>
#include <boost/random/mersenne_twister.hpp>
#include <algorithm>

using namespace boost::random;

int main(int, char**) {
    std::vector<double> w = { 2, 2, 1, 1, 2, 2, 1, 1, 2, 1000 };
    uniform_01<> dist;
    boost::random::mt19937 gen(342575235);
    std::vector<double> vals;
    for (auto iter : w) {
        vals.push_back(std::pow(dist(gen), 1. / iter));
    }
    // Sorting vals, but retain the indices. 
    // There is unfortunately no easy way to do this with STL.
    std::vector<std::pair<int, double>> valsWithIndices;
    for (size_t iter = 0; iter < vals.size(); iter++) {
        valsWithIndices.emplace_back(iter, vals[iter]);
    }
    std::sort(valsWithIndices.begin(), valsWithIndices.end(), [](auto x, auto y) {return x.second > y.second; });

    std::vector<size_t> samples;
    int sampleSize = 8;
    for (auto iter = 0; iter < sampleSize; iter++) {
        samples.push_back(valsWithIndices[iter].first);
    }
    for (auto iter : samples) {
        std::cout << iter << " ";
    }

    return 0;
}

Aleph0 的現有答案在我測試過的答案中效果最好。 我嘗試對原始解決方案(由 Aleph0 添加的解決方案)和新解決方案進行基准測試,其中只有在現有解決方案超過 50% 的已添加項目時才創建新的discrete_distribution分布(當分布產生樣本中已有的項目時重新繪制)。

我用樣本大小==人口大小進行了測試,權重等於指數。 我認為問題中的原始解決方案在O(n^2)運行,我的新解決方案在O(n logn)中運行,而論文中的一個似乎在O(n)運行。

-------------------------------------------------------------
Benchmark                   Time             CPU   Iterations
-------------------------------------------------------------
BM_Reuse             25252721 ns     25251731 ns           26
BM_NewDistribution   17338706125 ns  17313620000 ns         1
BM_SomePaper         6789525 ns      6779400 ns           100

代碼:

#include <array>
#include <benchmark/benchmark.h>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/uniform_01.hpp>
#include <iostream>
#include <iterator>
#include <random>
#include <vector>

const int sampleSize = 20000;

using namespace boost::random;

static void BM_ReuseDistribution(benchmark::State &state) {
  std::vector<double> weights;
  weights.resize(sampleSize);

  for (auto _ : state) {
    for (int i = 0; i < sampleSize; i++) {
      weights[i] = i + 1;
    }
    std::random_device rd;
    std::mt19937 generator(rd());
    int o[sampleSize];
    std::discrete_distribution<int> distribution(weights.begin(),
                                                 weights.end());
    int numAdded = 0;
    int distSize = sampleSize;
    for (int i = 0; i < sampleSize; ++i) {
      if (numAdded > distSize / 2) {
        distSize -= numAdded;
        numAdded = 0;
        distribution =
            std::discrete_distribution<int>(weights.begin(), weights.end());
      }

      int number = distribution(generator);
      if (!weights[number]) {
        i -= 1;
        continue;
      } else {
        weights[number] = 0;
        o[i] = number;
        numAdded += 1;
      }
    }
  }
}

BENCHMARK(BM_ReuseDistribution);

static void BM_NewDistribution(benchmark::State &state) {
  std::vector<double> weights;
  weights.resize(sampleSize);

  for (auto _ : state) {
    for (int i = 0; i < sampleSize; i++) {
      weights[i] = i + 1;
    }
    std::random_device rd;
    std::mt19937 generator(rd());
    int o[sampleSize];

    for (int i = 0; i < sampleSize; ++i) {
      std::discrete_distribution<int> distribution(weights.begin(),
                                                   weights.end());
      int number = distribution(generator);
      weights[number] = 0;
      o[i] = number;
    }
  }
}

BENCHMARK(BM_NewDistribution);

static void BM_SomePaper(benchmark::State &state) {
  std::vector<double> w;
   w.resize(sampleSize);
  for (auto _ : state) {
    for (int i = 0; i < sampleSize; i++) {
      w[i] = i + 1;
    }

    uniform_01<> dist;
    boost::random::mt19937 gen;
    std::vector<double> vals;
    std::generate_n(std::back_inserter(vals), w.size(),
                    [&dist, &gen]() { return dist(gen); });
    std::transform(vals.begin(), vals.end(), w.begin(), vals.begin(),
                   [&](auto r, auto w) { return std::pow(r, 1. / w); });
    std::vector<std::pair<double, int>> valIndices;
    size_t index = 0;
    std::transform(
        vals.begin(), vals.end(), std::back_inserter(valIndices),
        [&index](auto v) { return std::pair<double, size_t>(v, index++); });
    std::sort(valIndices.begin(), valIndices.end(),
              [](auto x, auto y) { return x.first > y.first; });
    std::vector<int> samples;
    std::transform(valIndices.begin(), valIndices.end(),
                   std::back_inserter(samples),
                   [](auto v) { return v.second; });
  }
}

BENCHMARK(BM_SomePaper);

BENCHMARK_MAIN();

感謝您的問題和其他人的好回答,我和您遇到了同樣的問題。 我認為你不需要每次都發布新的發行版,而不是

dist.param({ wts.begin(), wts.end() });

完整代碼如下:

//STL改進方案
#include <iostream>
#include <vector>
#include <random>
#include <iomanip>
#include <map>
#include <set>

int main()
{
//隨機數引擎采用默認引擎
std::default_random_engine rng;

//隨機數引擎采用設備熵值保證隨機性
auto gen = std::mt19937{ std::random_device{}() };

std::vector<int> wts(24); //存儲權重值

std::vector<int> in(24);  //存儲總體

std::set<int> out;  //存儲抽樣結果

std::map<int, int> count;  //輸出計數

int sampleCount = 0;  //抽樣次數計數

int index = 0;  //抽取的下標

int sampleSize = 24;  //抽取樣本的數量

int sampleTimes = 100000;  //抽取樣本的次數

//權重賦值
for (int i = 0; i < 24; i++)
{
    wts.at(i) = 48 - 2 * i;
}

//總體賦值並輸出
std::cout << "總體為24個:" << std::endl;

//賦值
for (int i = 0; i < 24; i++)
{
    in.at(i) = i + 1;

    std::cout << in.at(i) << " ";
}

std::cout << std::endl;

//產生按照給定權重的離散分布
std::discrete_distribution<size_t> dist{ wts.begin(), wts.end() };

auto probs = dist.probabilities(); // 返回概率計算結果

//輸出概率計算結果
std::cout << "總體中各數據的權重為:" << std::endl;

std::copy(probs.begin(), probs.end(), std::ostream_iterator<double>
{ std::cout << std::fixed << std::setprecision(5), “ ”});

std::cout << std::endl << std::endl;

//==========抽樣測試==========
for (size_t j = 0; j < sampleTimes; j++)
{
    index = dist(gen);

    //std::cout << index << “ ”;  //輸出抽樣結果

    count[index] += 1;  //抽樣結果計數        
}

double sum = 0.0;  //用於概率求和

//輸出抽樣結果
std::cout << "總共抽樣" << sampleTimes << "次," << "各下標的頻數及頻率為:" << std::endl;

for (size_t i = 0; i < 24; i++)
{
    std::cout << i << "共有" << count[i] << "個   頻率為:" << count[i] / double(sampleTimes) << std::endl;

    sum += count[i] / double(sampleTimes);
}

std::cout << "總頻率為:" << sum << std::endl << std::endl;  //輸出總概率
//==========抽樣測試==========

//從總體中抽樣放入集合中,直至集合大小達到樣本數
while (out.size() < sampleSize - 1)
{
    index = dist(gen);  //抽取下標

    out.insert(index);  //插入集合

    sampleCount += 1;   //抽樣次數增加1

    wts.at(index) = 0; //將抽取到的下標索引的權重設置為0
    
    dist.param({ wts.begin(), wts.end() });

    probs = dist.probabilities(); // 返回概率計算結果

    //輸出概率計算結果
    std::cout << "總體中各數據的權重為:" << std::endl;

    std::copy(probs.begin(), probs.end(), std::ostream_iterator<double>
    { std::cout << std::fixed << std::setprecision(5), “ ”});

    std::cout << std::endl << std::endl;
}
//最后一次抽取,單獨出來是避免將所有權重都為0,的權重數組賦值給離散分布dist,避免報錯
index = dist(gen);  //抽取下標

out.insert(index);  //插入集合

sampleCount += 1;   //抽樣次數增加1

//輸出抽樣結果
std::cout << "從總體中抽取的" << sampleSize << "個樣本的下標索引為:" << std::endl;

for (auto iter : out)
{
    std::cout << iter << “-”;
}

std::cout << std::endl;

//輸出抽樣次數
std::cout << "抽樣次數為:" << sampleCount << std::endl;

out.clear(); //清空輸出集合,為下次抽樣做准備

std::cin.get(); //保留控制台窗口
return 0;
}

暫無
暫無

聲明:本站的技術帖子網頁,遵循CC BY-SA 4.0協議,如果您需要轉載,請注明本站網址或者原文地址。任何問題請咨詢:yoyou2525@163.com.

 
粵ICP備18138465號  © 2020-2024 STACKOOM.COM