繁体   English   中英

Python Gekko 的全局最小值与局部最小值解决方案

[英]Global minimum versus local minima solution with Python Gekko

一个简单的优化示例在(0,0,8)处有 2 个局部最小值,目标936.0(7,0,0) ,目标951.0 在 Python Gekko( APOPTBPOPTIPOPT )中使用局部优化器找到全局解决方案的技术是什么?

from gekko import GEKKO
m = GEKKO(remote=False)
x = m.Array(m.Var,3,lb=0)
x1,x2,x3 = x
m.Minimize(1000-x1**2-2*x2**2-x3**2-x1*x2-x1*x3)
m.Equations([8*x1+14*x2+7*x3==56,
             x1**2+x2**2+x3**2>=25])
m.solve(disp=False)
res=[print(f'x{i+1}: {xi.value[0]}') for i,xi in enumerate(x)]
print(f'Objective: {m.options.objfcnval:.2f}')

这会产生局部最小值:

x1: 7.0
x2: 0.0
x3: 0.0
Objective: 951.00

BARONCOCOSGlobSolICOSLGOLINGOOQNLP等全局最优求解器,但是有哪些可以与局部优化器一起使用以搜索全局解决方案的快速策略? 一些工业应用具有高度非线性模型,这些模型尚未针对控制和设计中的全局解决方案进行全面测试。 策略可以在Python并行吗?

多起点方法(使用随机起点)可能很有用。 不能保证全局最优,但至少你可以免受一些令人尴尬的糟糕局部解决方案的影响。 一些本地 NLP 求解器具有此内置功能(例如 Knitro)。

下面是 Python 示例代码,使用多启动方法获得全局解决方案。 它使用多线程来并行化搜索。

import numpy as np
import threading
import time, random
from gekko import GEKKO

class ThreadClass(threading.Thread):
    def __init__(self, id, xg):
        s = self
        s.id = id
        s.m = GEKKO(remote=False)
        s.xg = xg
        s.objective = float('NaN')

        # initialize variables
        s.m.x = s.m.Array(s.m.Var,3,lb=0)
        for i in range(3):
            s.m.x[i].value = xg[i]
        s.m.x1,s.m.x2,s.m.x3 = s.m.x

        # Equations
        s.m.Equation(8*s.m.x1+14*s.m.x2+7*s.m.x3==56)
        s.m.Equation(s.m.x1**2+s.m.x2**2+s.m.x3**2>=25)

        # Objective
        s.m.Minimize(1000-s.m.x1**2-2*s.m.x2**2-s.m.x3**2
                     -s.m.x1*s.m.x2-s.m.x1*s.m.x3)

        # Set solver option
        s.m.options.SOLVER = 1

        threading.Thread.__init__(s)

    def run(self):
        print('Running application ' + str(self.id) + '\n')
        self.m.solve(disp=False,debug=0) # solve
        # Retrieve objective if successful
        if (self.m.options.APPSTATUS==1):
            self.objective = self.m.options.objfcnval
        else:
            self.objective = float('NaN')
        self.m.cleanup()

# Optimize at mesh points
x1_ = np.arange(0.0, 10.0, 3.0)
x2_ = np.arange(0.0, 10.0, 3.0)
x3_ = np.arange(0.0, 10.0, 3.0)
x1,x2,x3 = np.meshgrid(x1_,x2_,x3_)

threads = [] # Array of threads

# Load applications
id = 0
for i in range(x1.shape[0]):
    for j in range(x1.shape[1]):
        for k in range(x1.shape[2]):
            xg = (x1[i,j,k],x2[i,j,k],x3[i,j,k])
            # Create new thread
            threads.append(ThreadClass(id, xg))
            # Increment ID
            id += 1

# Run applications simultaneously as multiple threads
# Max number of threads to run at once
max_threads = 8
for t in threads:
    while (threading.activeCount()>max_threads):
        # check for additional threads every 0.01 sec
        time.sleep(0.01)
    # start the thread
    t.start()

# Check for completion
mt = 10.0 # max time (sec)
it = 0.0  # time counter
st = 1.0  # sleep time (sec)
while (threading.active_count()>=3):
    time.sleep(st)
    it = it + st
    print('Active Threads: ' + str(threading.active_count()))
    # Terminate after max time
    if (it>=mt):
        break

# Initialize array for objective
obj = np.empty_like(x1)

# Retrieve objective results
id = 0
id_best = 0; obj_best = 1e10
for i in range(x1.shape[0]):
    for j in range(x1.shape[1]):
        for k in range(x1.shape[2]):
            obj[i,j,k] = threads[id].objective
            if obj[i,j,k]<obj_best:
                id_best = id
                obj_best = obj[i,j,k]
            id += 1

print(obj)
print(f'Best objective {obj_best}')
print(f'Solution {threads[id_best].m.x}')

它产生全局解决方案:

Best objective 936.0
Solution [[0.0] [0.0] [8.0]]

除了多起点随机搜索之外,还有贝叶斯算法、G.netic 算法以及超参数优化包(如hyperopt )中的其他方法。 这篇Medium 文章很好地概述了超参数搜索方法。 下面是使用 Gekko 在 Python 中找到全局最优值的代码。 有并行化的建议: Python 和 HyperOpt:How to make multi-process grid searching? 虽然我没有尝试过这些。 这是带有树结构 Parzen 估计器的具体示例。

from gekko import GEKKO
from hyperopt import fmin, tpe, hp
from hyperopt import STATUS_OK, STATUS_FAIL

# Define the search space for the hyperparameters
space = {'x1': hp.quniform('x1', 0, 10, 3),
         'x2': hp.quniform('x2', 0, 10, 3),
         'x3': hp.quniform('x3', 0, 10, 3)}

def objective(params):
    m = GEKKO(remote=False)
    x = m.Array(m.Var,3,lb=0)
    x1,x2,x3 = x
    x1.value = params['x1']
    x2.value = params['x2']
    x3.value = params['x3']
    m.Minimize(1000-x1**2-2*x2**2-x3**2-x1*x2-x1*x3)
    m.Equations([8*x1+14*x2+7*x3==56,
                 x1**2+x2**2+x3**2>=25])
    m.options.SOLVER = 1
    m.solve(disp=False,debug=False)
    obj = m.options.objfcnval
    if m.options.APPSTATUS==1:
        s=STATUS_OK
    else:
        s=STATUS_FAIL
    m.cleanup()
    return {'loss':obj, 'status': s, 'x':x}

best = fmin(objective, space, algo=tpe.suggest, max_evals=50)
sol = objective(best)
print(f"Solution Status: {sol['status']}")
print(f"Objective: {sol['loss']:.2f}")
print(f"Solution: {sol['x']}")

Hyperopt 找到以 gekko 作为局部最小化器的全局解决方案:

Solution Status: ok
Objective: 936.00
Solution: [[0.0] [0.0] [8.0]]

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM