簡體   English   中英

如何使汽車駛向怪物

[英]How to make the car move towards the monster

我是游戲開發的新手,我已經建立了一個汽車游戲,它可以自動移動並且當它撞到怪物時,現在我想讓汽車移向怪物,所以我研究了尋路算法,現在我想在我的游戲中實現A-Star尋路算法,因此尋路功能如下:

function findPath(world, pathStart, pathEnd)
{
    // shortcuts for speed
    var abs = Math.abs;
    var max = Math.max;
    var pow = Math.pow;
    var sqrt = Math.sqrt;

    // the world data are integers:
    // anything higher than this number is considered blocked
    // this is handy is you use numbered sprites, more than one
    // of which is walkable road, grass, mud, etc
    var maxWalkableTileNum = 0;

    // keep track of the world dimensions
    // Note that this A-star implementation expects the world array to be square: 
    // it must have equal height and width. If your game world is rectangular, 
    // just fill the array with dummy values to pad the empty space.
    var worldWidth = world[0].length;
    var worldHeight = world.length;
    var worldSize = worldWidth * worldHeight;

    // which heuristic should we use?
    // default: no diagonals (Manhattan)
    var distanceFunction = ManhattanDistance;
    var findNeighbours = function(){}; // empty

    /*

    // alternate heuristics, depending on your game:

    // diagonals allowed but no sqeezing through cracks:
    var distanceFunction = DiagonalDistance;
    var findNeighbours = DiagonalNeighbours;

    // diagonals and squeezing through cracks allowed:
    var distanceFunction = DiagonalDistance;
    var findNeighbours = DiagonalNeighboursFree;

    // euclidean but no squeezing through cracks:
    var distanceFunction = EuclideanDistance;
    var findNeighbours = DiagonalNeighbours;

    // euclidean and squeezing through cracks allowed:
    var distanceFunction = EuclideanDistance;
    var findNeighbours = DiagonalNeighboursFree;

    */

    // distanceFunction functions
    // these return how far away a point is to another

    function ManhattanDistance(Point, Goal)
    {   // linear movement - no diagonals - just cardinal directions (NSEW)
        return abs(Point.x - Goal.x) + abs(Point.y - Goal.y);
    }

    function DiagonalDistance(Point, Goal)
    {   // diagonal movement - assumes diag dist is 1, same as cardinals
        return max(abs(Point.x - Goal.x), abs(Point.y - Goal.y));
    }

    function EuclideanDistance(Point, Goal)
    {   // diagonals are considered a little farther than cardinal directions
        // diagonal movement using Euclide (AC = sqrt(AB^2 + BC^2))
        // where AB = x2 - x1 and BC = y2 - y1 and AC will be [x3, y3]
        return sqrt(pow(Point.x - Goal.x, 2) + pow(Point.y - Goal.y, 2));
    }

    // Neighbours functions, used by findNeighbours function
    // to locate adjacent available cells that aren't blocked

    // Returns every available North, South, East or West
    // cell that is empty. No diagonals,
    // unless distanceFunction function is not Manhattan
    function Neighbours(x, y)
    {
        var N = y - 1,
        S = y + 1,
        E = x + 1,
        W = x - 1,
        myN = N > -1 && canWalkHere(x, N),
        myS = S < worldHeight && canWalkHere(x, S),
        myE = E < worldWidth && canWalkHere(E, y),
        myW = W > -1 && canWalkHere(W, y),
        result = [];
        if(myN)
        result.push({x:x, y:N});
        if(myE)
        result.push({x:E, y:y});
        if(myS)
        result.push({x:x, y:S});
        if(myW)
        result.push({x:W, y:y});
        findNeighbours(myN, myS, myE, myW, N, S, E, W, result);
        return result;
    }

    // returns every available North East, South East,
    // South West or North West cell - no squeezing through
    // "cracks" between two diagonals
    function DiagonalNeighbours(myN, myS, myE, myW, N, S, E, W, result)
    {
        if(myN)
        {
            if(myE && canWalkHere(E, N))
            result.push({x:E, y:N});
            if(myW && canWalkHere(W, N))
            result.push({x:W, y:N});
        }
        if(myS)
        {
            if(myE && canWalkHere(E, S))
            result.push({x:E, y:S});
            if(myW && canWalkHere(W, S))
            result.push({x:W, y:S});
        }
    }

    // returns every available North East, South East,
    // South West or North West cell including the times that
    // you would be squeezing through a "crack"
    function DiagonalNeighboursFree(myN, myS, myE, myW, N, S, E, W, result)
    {
        myN = N > -1;
        myS = S < worldHeight;
        myE = E < worldWidth;
        myW = W > -1;
        if(myE)
        {
            if(myN && canWalkHere(E, N))
            result.push({x:E, y:N});
            if(myS && canWalkHere(E, S))
            result.push({x:E, y:S});
        }
        if(myW)
        {
            if(myN && canWalkHere(W, N))
            result.push({x:W, y:N});
            if(myS && canWalkHere(W, S))
            result.push({x:W, y:S});
        }
    }

    // returns boolean value (world cell is available and open)
    function canWalkHere(x, y)
    {
        return ((world[x] != null) &&
            (world[x][y] != null) &&
            (world[x][y] <= maxWalkableTileNum));
    };

    // Node function, returns a new object with Node properties
    // Used in the calculatePath function to store route costs, etc.
    function Node(Parent, Point)
    {
        var newNode = {
            // pointer to another Node object
            Parent:Parent,
            // array index of this Node in the world linear array
            value:Point.x + (Point.y * worldWidth),
            // the location coordinates of this Node
            x:Point.x,
            y:Point.y,
            // the heuristic estimated cost
            // of an entire path using this node
            f:0,
            // the distanceFunction cost to get
            // from the starting point to this node
            g:0
        };

        return newNode;
    }

    // Path function, executes AStar algorithm operations
    function calculatePath()
    {
        // create Nodes from the Start and End x,y coordinates
        var mypathStart = Node(null, {x:pathStart[0], y:pathStart[1]});
        var mypathEnd = Node(null, {x:pathEnd[0], y:pathEnd[1]});
        // create an array that will contain all world cells
        var AStar = new Array(worldSize);
        // list of currently open Nodes
        var Open = [mypathStart];
        // list of closed Nodes
        var Closed = [];
        // list of the final output array
        var result = [];
        // reference to a Node (that is nearby)
        var myNeighbours;
        // reference to a Node (that we are considering now)
        var myNode;
        // reference to a Node (that starts a path in question)
        var myPath;
        // temp integer variables used in the calculations
        var length, max, min, i, j;
        // iterate through the open list until none are left
        while(length = Open.length)
        {
            max = worldSize;
            min = -1;
            for(i = 0; i < length; i++)
            {
                if(Open[i].f < max)
                {
                    max = Open[i].f;
                    min = i;
                }
            }
            // grab the next node and remove it from Open array
            myNode = Open.splice(min, 1)[0];
            // is it the destination node?
            if(myNode.value === mypathEnd.value)
            {
                myPath = Closed[Closed.push(myNode) - 1];
                do
                {
                    result.push([myPath.x, myPath.y]);
                }
                while (myPath = myPath.Parent);
                // clear the working arrays
                AStar = Closed = Open = [];
                // we want to return start to finish
                result.reverse();
            }
            else // not the destination
            {
                // find which nearby nodes are walkable
                myNeighbours = Neighbours(myNode.x, myNode.y);
                // test each one that hasn't been tried already
                for(i = 0, j = myNeighbours.length; i < j; i++)
                {
                    myPath = Node(myNode, myNeighbours[i]);
                    if (!AStar[myPath.value])
                    {
                        // estimated cost of this particular route so far
                        myPath.g = myNode.g + distanceFunction(myNeighbours[i], myNode);
                        // estimated cost of entire guessed route to the destination
                        myPath.f = myPath.g + distanceFunction(myNeighbours[i], mypathEnd);
                        // remember this new path for testing above
                        Open.push(myPath);
                        // mark this node in the world graph as visited
                        AStar[myPath.value] = true;
                    }
                }
                // remember this route as having no more untested options
                Closed.push(myNode);
            }
        } // keep iterating until the Open list is empty
        return result;
    }

    // actually calculate the a-star path!
    // this returns an array of coordinates
    // that is empty if no path is possible
    return calculatePath();

} // end of findPath() function

然后通過調用該函數

currentPath = findPath(world,pathStart,pathEnd);

但不起作用我的工作

任何幫助表示贊賞。

這是一個簡單的路徑查找腳本。

一旦計算出路徑,沿汽車移動就不容易了。

該腳本有兩個階段:

  1. 世界一代

掃描地圖上的障礙物和怪物的地方

  1. 路徑生成

找到怪物並正在計算路徑的地方。

 //HTML elements var canvas = document.body.appendChild(document.createElement("canvas")); canvas.height = 500; canvas.width = canvas.height; var ctx = canvas.getContext("2d"); //Logic elements var tileSize = 16; var monster = { x: Math.floor(Math.random() * Math.ceil(canvas.width / tileSize) / 2) * 2, y: Math.floor(Math.random() * Math.ceil(canvas.height / tileSize) / 2) * 2 }; var player = { x: 9, y: 9 }; var aStar = { path: [], opened: [], closed: [], done: false }; //Simple distance formular function distance(a, b) { return Math.sqrt(Math.pow(ax - bx, 2) + Math.pow(ay - by, 2)); } function draw() { ctx.clearRect(0, 0, canvas.width, canvas.height); //Tested Tiles ctx.fillStyle = "cyan"; for (var pi = 0; pi < aStar.closed.length; pi++) { var p = aStar.closed[pi]; ctx.fillRect(px * tileSize, py * tileSize, tileSize, tileSize); } //Path ctx.fillStyle = "blue"; for (var pi = 0; pi < aStar.path.length; pi++) { var p = aStar.path[pi]; ctx.fillRect(px * tileSize, py * tileSize, tileSize, tileSize); } //Monster ctx.fillStyle = "red"; ctx.fillRect(monster.x * tileSize, monster.y * tileSize, tileSize, tileSize); //Player ctx.fillStyle = "green"; ctx.fillRect(player.x * tileSize, player.y * tileSize, tileSize, tileSize); //Tiles for (var x = 0; x < Math.ceil(canvas.width / tileSize); x++) { for (var y = 0; y < Math.ceil(canvas.height / tileSize); y++) { ctx.strokeRect(x * tileSize, y * tileSize, tileSize, tileSize); } } } function main() { //If no steps, open "player" if (aStar.opened.length == 0) { aStar.opened.push({ x: player.x, y: player.y, step: 0 }); } //Check for monster if ((aStar.opened.some(function(c) { return cx === monster.x && cy === monster.y; })) == true) { //if monster found if (aStar.path.length < 1) { //If no steps in path, add monster as first aStar.path.push(aStar.opened.find(function(c) { return cx === monster.x && cy === monster.y; })); } else if ((aStar.path.length > 0 ? aStar.path[aStar.path.length - 1].step == 0 : false) === false) { //If last step of path isn't player, compute a step to path var lastTile = aStar.path[aStar.path.length - 1]; var bestTile = { x: lastTile.x, y: lastTile.y, step: lastTile.step }; //Loop through tiles adjacent to the last path tile and pick the "best" for (var x = lastTile.x - 1; x < lastTile.x + 2; x++) { for (var y = lastTile.y - 1; y < lastTile.y + 2; y++) { var suspect = aStar.closed.find(function(c) { return cx === x && cy === y; }); if (suspect !== void 0) { if (suspect.step + distance(suspect, player) < bestTile.step + distance(bestTile, player)) { bestTile = suspect; } } } } //Add best tile to path aStar.path.push(bestTile); } } else { //If monster isn't found, continue world mapping //"newOpen" will hold the next "opened" list var newOpen = []; //For each opened, check neighbours for (var oi = 0; oi < aStar.opened.length; oi++) { var o = aStar.opened[oi]; for (var x = ox - 1; x < ox + 2; x++) { for (var y = oy - 1; y < oy + 2; y++) { if (x === ox && y === oy || aStar.closed.some(function(c) { return cx === x && cy === y; }) || aStar.opened.some(function(c) { return cx === x && cy === y; }) || newOpen.some(function(c) { return cx === x && cy === y; })) { continue; } //If neighbours isn't in any list, add it to the newOpen list newOpen.push({ x: x, y: y, step: o.step + 1 }); } } } //Close the previously opened list aStar.closed = aStar.closed.concat(aStar.opened); //Add new opened list aStar.opened = newOpen; } //Draw progress draw(); requestAnimationFrame(main); } //Start process requestAnimationFrame(main); 

編輯1-沒有尋路

我什至不確定您是否需要為此尋路。

在下面的示例中,汽車只是相對於目標角度被推向目標:

 var __extends = (this && this.__extends) || (function() { var extendStatics = Object.setPrototypeOf || ({ __proto__: [] } instanceof Array && function(d, b) { d.__proto__ = b; }) || function(d, b) { for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p]; }; return function(d, b) { extendStatics(d, b); function __() { this.constructor = d; } d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __()); }; })(); var Game; (function(Game) { var GameImage = (function() { function GameImage(name, src) { this.name = name; this.src = src; this.node = document.createElement("img"); GameImage._pending++; this.node.onload = GameImage._loading; this.node.src = this.src; GameImage.all.push(this); } GameImage.loaded = function() { return this._loaded === this._pending; }; GameImage._loading = function() { this._loaded++; }; GameImage.getImage = function(id) { return this.all.find(function(img) { return img.name === id; }); }; return GameImage; }()); GameImage.all = []; GameImage._loaded = 0; GameImage._pending = 0; new GameImage("background", "http://res.cloudinary.com/dfhppjli0/image/upload/c_scale,w_2048/v1492045665/road_dwsmux.png"); new GameImage("hero", "http://res.cloudinary.com/dfhppjli0/image/upload/c_scale,w_32/v1491958999/car_p1k2hw.png"); new GameImage("monster", "http://res.cloudinary.com/dfhppjli0/image/upload/v1491958478/monster_rsm0po.png"); new GameImage("hero_other", "http://res.cloudinary.com/dfhppjli0/image/upload/v1492579967/car_03_ilt08o.png"); function distance(a, b) { return Math.sqrt(Math.pow(ax - bx, 2) + Math.pow(ay - by, 2)); } function degreeToRadian(degrees) { return degrees * (Math.PI / 180); } function radianToDegree(radians) { return radians * (180 / Math.PI); } function angleBetweenTwoPoints(p1, p2) { return Math.atan2(p2.y - p1.y, p2.x - p1.x) * 180 / Math.PI; } var Actor = (function() { function Actor() { this.angle = 0; } Actor.prototype.main = function() {}; Actor.prototype.render = function(ctx) { if (this.angle != 0) { var rads = degreeToRadian(this.angle - 90); ctx.translate(this.position.x + 0.5 * this.image.node.naturalWidth, this.position.y + 0.5 * this.image.node.naturalHeight); ctx.rotate(rads); ctx.drawImage(this.image.node, 0, 0); ctx.rotate(-rads); ctx.translate(-(this.position.x + 0.5 * this.image.node.naturalWidth), -(this.position.y + 0.5 * this.image.node.naturalHeight)); } else { ctx.drawImage(this.image.node, this.position.x, this.position.y); } }; return Actor; }()); var Monster = (function(_super) { __extends(Monster, _super); function Monster(position) { var _this = _super.call(this) || this; _this.position = position; _this.image = GameImage.getImage("monster"); Monster.all.push(_this); return _this; } return Monster; }(Actor)); Monster.all = []; var Car = (function(_super) { __extends(Car, _super); function Car(position, target) { if (target === void 0) { target = null; } var _this = _super.call(this) || this; _this.position = position; _this.target = target; _this.hitCount = 0; _this.image = GameImage.getImage("hero"); _this.speed = 10; Car.all.push(_this); return _this; } Car.prototype.main = function() { var angle = angleBetweenTwoPoints(this.target.position, this.position); var cos = Math.cos(degreeToRadian(angle)) * -1; var sin = Math.sin(degreeToRadian(angle)); this.angle = angle; this.position.x += cos * this.speed; this.position.y -= sin * this.speed; if (distance(this.position, this.target.position) < 10) { this.target.position.x = Math.random() * mainCanvas.width; this.target.position.y = Math.random() * mainCanvas.height; this.hitCount++; console.log("Hit!"); } }; return Car; }(Actor)); Car.all = []; var background = GameImage.getImage("background"); var mainCanvas = document.body.appendChild(document.createElement("canvas")); mainCanvas.width = background.node.naturalWidth; mainCanvas.height = background.node.naturalHeight; var ctx = mainCanvas.getContext("2d"); var monster1 = new Monster({ x: Math.random() * mainCanvas.width, y: Math.random() * mainCanvas.height }); var monster2 = new Monster({ x: Math.random() * mainCanvas.width, y: Math.random() * mainCanvas.height }); new Car({ x: Math.random() * mainCanvas.width, y: Math.random() * mainCanvas.height }, monster1); new Car({ x: Math.random() * mainCanvas.width, y: Math.random() * mainCanvas.height }, monster2); function main() { ctx.drawImage(background.node, 0, 0); for (var ci = 0; ci < Car.all.length; ci++) { var c = Car.all[ci]; c.main(); c.render(ctx); } for (var mi = 0; mi < Monster.all.length; mi++) { var m = Monster.all[mi]; m.main(); m.render(ctx); } requestAnimationFrame(main); } requestAnimationFrame(main); })(Game || (Game = {})); 

只要沒有障礙,就可以正常工作。

暫無
暫無

聲明:本站的技術帖子網頁,遵循CC BY-SA 4.0協議,如果您需要轉載,請注明本站網址或者原文地址。任何問題請咨詢:yoyou2525@163.com.

 
粵ICP備18138465號  © 2020-2024 STACKOOM.COM