簡體   English   中英

TensorFlow 2.0:如何使用tf.keras對圖表進行分組? tf.name_scope / tf.variable_scope不再使用了?

[英]TensorFlow 2.0: how to group graph using tf.keras? tf.name_scope/tf.variable_scope not used anymore?

回到TensorFlow <2.0,我們用於定義層,尤其是更復雜的設置,例如初始模塊 ,通過將它們與tf.name_scopetf.variable_scope分組。

利用這些運算符,我們能夠方便地構建計算圖,這使得TensorBoard的圖表視圖可以更容易解釋。

結構化組只是一個例子: 在此輸入圖像描述

這對於調試復雜的體系結構非常方便。

不幸的是, tf.keras似乎忽略了tf.name_scope並且tf.variable_scope在TensorFlow> = 2.0中消失了。 因此,像這樣的解決方案......

with tf.variable_scope("foo"):
    with tf.variable_scope("bar"):
        v = tf.get_variable("v", [1])
        assert v.name == "foo/bar/v:0"

...不再可用。 有替代品嗎?

我們如何在TensorFlow> = 2.0中對圖層和整個模型進行分組? 如果我們不對圖層進行分組, tf.keras只需將所有內容串行放置在圖表視圖中, tf.keras就會為復雜模型創建一個大混亂。

是否有替換tf.variable_scope 到目前為止我找不到任何東西,但在TensorFlow <2.0中大量使用了該方法。


編輯 :我現在已經為TensorFlow 2.0實現了一個示例。 這是使用tf.keras實現的簡單GAN:

# Generator
G_inputs = tk.Input(shape=(100,), name=f"G_inputs")

x = tk.layers.Dense(7 * 7 * 16)(G_inputs)
x = tf.nn.leaky_relu(x)
x = tk.layers.Flatten()(x)
x = tk.layers.Reshape((7, 7, 16))(x)

x = tk.layers.Conv2DTranspose(32, (3, 3), padding="same")(x)
x = tk.layers.BatchNormalization()(x)
x = tf.nn.leaky_relu(x)
x = tf.image.resize(x, (14, 14))

x = tk.layers.Conv2DTranspose(32, (3, 3), padding="same")(x)
x = tk.layers.BatchNormalization()(x)
x = tf.nn.leaky_relu(x)
x = tf.image.resize(x, (28, 28))

x = tk.layers.Conv2DTranspose(32, (3, 3), padding="same")(x)
x = tk.layers.BatchNormalization()(x)
x = tf.nn.leaky_relu(x)

x = tk.layers.Conv2DTranspose(1, (3, 3), padding="same")(x)
x = tf.nn.sigmoid(x)

G_model = tk.Model(inputs=G_inputs,
                   outputs=x,
                   name="G")
G_model.summary()

# Discriminator
D_inputs = tk.Input(shape=(28, 28, 1), name=f"D_inputs")

x = tk.layers.Conv2D(32, (3, 3), padding="same")(D_inputs)
x = tf.nn.leaky_relu(x)
x = tk.layers.MaxPooling2D((2, 2))(x)
x = tk.layers.Conv2D(32, (3, 3), padding="same")(x)
x = tf.nn.leaky_relu(x)
x = tk.layers.MaxPooling2D((2, 2))(x)
x = tk.layers.Conv2D(64, (3, 3), padding="same")(x)
x = tf.nn.leaky_relu(x)

x = tk.layers.Flatten()(x)

x = tk.layers.Dense(128)(x)
x = tf.nn.sigmoid(x)
x = tk.layers.Dense(64)(x)
x = tf.nn.sigmoid(x)
x = tk.layers.Dense(1)(x)
x = tf.nn.sigmoid(x)

D_model = tk.Model(inputs=D_inputs,
                   outputs=x,
                   name="D")

D_model.compile(optimizer=tk.optimizers.Adam(learning_rate=1e-5, beta_1=0.5, name="Adam_D"),
                loss="binary_crossentropy")
D_model.summary()

GAN = tk.Sequential()
GAN.add(G_model)
GAN.add(D_model)
GAN.compile(optimizer=tk.optimizers.Adam(learning_rate=1e-5, beta_1=0.5, name="Adam_GAN"),
            loss="binary_crossentropy")

tb = tk.callbacks.TensorBoard(log_dir="./tb_tf2.0", write_graph=True)

# dummy data
noise = np.random.rand(100, 100).astype(np.float32)
target = np.ones(shape=(100, 1), dtype=np.float32)

GAN.fit(x=noise,
        y=target,
        callbacks=[tb])

TensorBoard中這些模型的圖形如下所示 層次只是一個完整的混亂,模型“G”和“D”(在右側)涵蓋了一些混亂。 “GAN”完全缺失。 無法正確打開訓練操作“Adam”:從左到右繪制了太多層,並在整個地方繪制了箭頭。 很難通過這種方式檢查GAN的正確性。


雖然同樣的GAN的TensorFlow 1.X實現涵蓋了許多“樣板代碼”......

# Generator
Z = tf.placeholder(tf.float32, shape=[None, 100], name="Z")


def model_G(inputs, reuse=False):
    with tf.variable_scope("G", reuse=reuse):
        x = tf.layers.dense(inputs, 7 * 7 * 16)
        x = tf.nn.leaky_relu(x)
        x = tf.reshape(x, (-1, 7, 7, 16))

        x = tf.layers.conv2d_transpose(x, 32, (3, 3), padding="same")
        x = tf.layers.batch_normalization(x)
        x = tf.nn.leaky_relu(x)
        x = tf.image.resize_images(x, (14, 14))

        x = tf.layers.conv2d_transpose(x, 32, (3, 3), padding="same")
        x = tf.layers.batch_normalization(x)
        x = tf.nn.leaky_relu(x)
        x = tf.image.resize_images(x, (28, 28))

        x = tf.layers.conv2d_transpose(x, 32, (3, 3), padding="same")
        x = tf.layers.batch_normalization(x)
        x = tf.nn.leaky_relu(x)

        x = tf.layers.conv2d_transpose(x, 1, (3, 3), padding="same")
        G_logits = x
        G_out = tf.nn.sigmoid(x)

    return G_logits, G_out


# Discriminator
D_in = tf.placeholder(tf.float32, shape=[None, 28, 28, 1], name="D_in")


def model_D(inputs, reuse=False):
    with tf.variable_scope("D", reuse=reuse):
        with tf.variable_scope("conv"):
            x = tf.layers.conv2d(inputs, 32, (3, 3), padding="same")
            x = tf.nn.leaky_relu(x)
            x = tf.layers.max_pooling2d(x, (2, 2), (2, 2))
            x = tf.layers.conv2d(x, 32, (3, 3), padding="same")
            x = tf.nn.leaky_relu(x)
            x = tf.layers.max_pooling2d(x, (2, 2), (2, 2))
            x = tf.layers.conv2d(x, 64, (3, 3), padding="same")
            x = tf.nn.leaky_relu(x)

        with tf.variable_scope("dense"):
            x = tf.reshape(x, (-1, 7 * 7 * 64))

            x = tf.layers.dense(x, 128)
            x = tf.nn.sigmoid(x)
            x = tf.layers.dense(x, 64)
            x = tf.nn.sigmoid(x)
            x = tf.layers.dense(x, 1)
            D_logits = x
            D_out = tf.nn.sigmoid(x)

    return D_logits, D_out

# models
G_logits, G_out = model_G(Z)
D_logits, D_out = model_D(D_in)
GAN_logits, GAN_out = model_D(G_out, reuse=True)

# losses
target = tf.placeholder(tf.float32, shape=[None, 1], name="target")
d_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logits, labels=target))
gan_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=GAN_logits, labels=target))

# train ops
train_d = tf.train.AdamOptimizer(learning_rate=1e-5, name="AdamD") \
    .minimize(d_loss, var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="D"))
train_gan = tf.train.AdamOptimizer(learning_rate=1e-5, name="AdamGAN") \
    .minimize(gan_loss, var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="G"))

# dummy data
dat_noise = np.random.rand(100, 100).astype(np.float32)
dat_target = np.ones(shape=(100, 1), dtype=np.float32)

sess = tf.Session()
tf_init = tf.global_variables_initializer()
sess.run(tf_init)

# merged = tf.summary.merge_all()
writer = tf.summary.FileWriter("./tb_tf1.0", sess.graph)

ret = sess.run([gan_loss, train_gan], feed_dict={Z: dat_noise, target: dat_target})

...生成的TensorBoard圖表看起來更清晰。 請注意清潔的“AdamD”和“AdamGAN”范圍是如何在右上方。 您可以直接檢查優化器是否附加到正確的范圍/梯度。

根據TensorFlow 2.0中的社區RFC 變量

  • 控制變量命名的用戶可以使用tf.name_scope + tf.Variable

實際上, tf.name_scope仍然存在於TensorFlow 2.0中,因此您可以這樣做:

with tf.name_scope("foo"):
    with tf.name_scope("bar"):
        v = tf.Variable([0], dtype=tf.float32, name="v")
        assert v.name == "foo/bar/v:0"

此外,如上所述:

  • var_scope和get_variable的tf 1.0版本將保留在tf.compat.v1中

所以如果你真的需要,你可以回到tf.compat.v1.variable_scopetf.compat.v1.get_variable

變量范圍和tf.get_variable可以很方便,但是有很小的陷阱和角落情況,特別是因為它們的行為相似但不完全像名稱范圍,它實際上是一個並行的機制。 我認為只有名稱范圍將更加一致和直接。

暫無
暫無

聲明:本站的技術帖子網頁,遵循CC BY-SA 4.0協議,如果您需要轉載,請注明本站網址或者原文地址。任何問題請咨詢:yoyou2525@163.com.

 
粵ICP備18138465號  © 2020-2024 STACKOOM.COM