简体   繁体   English

表达式的渐近运行时复杂度

[英]Asymptotic run time complexity of an expression

Can I say that: 我可以这样说吗:

log n + log (n-1) + log (n-2) + .... + log (n - k) = theta(k * log n)? log n + log(n-1)+ log(n-2)+ .... + log(n-k)= theta(k * log n)?

Formal way to write the above: 上面的正式写法:

Sigma (i runs from 0 to k) log (ni) = theta (k* log n)? Sigma(i从0到k)log(ni)= theta(k * log n)?

If the above statement is right, how can I prove it? 如果以上说法正确,我该如何证明?

If it is wrong, how can I express it (the left side of the equation, of course) as an asymptotic run time function of n and k? 如果不正确,如何将其(当然是等式的左侧)表示为n和k的渐近运行时间函数?

Thanks. 谢谢。

Denote: 表示:

LHS = log(n) + log(n-1) + ... + log(nk)

RHS = k * log n

Note that: 注意:

LHS = log(n*(n-1)*...*(nk)) = log(polynomial of (k+1)th order)

It follows that this is equal to: 因此,这等于:

(k+1)*log(n(1 + terms that are 0 in limit))

If we consider a division: 如果我们考虑除法:

(k+1)*log(n(1 + terms that are 0 in limit)) / RHS

we get in limit: 我们受到限制:

(k+1)/k = 1 + 1/k

So if k is a constant, both terms grow equally fast. 因此,如果k为常数,则两项均会快速增长。 So LHS = theta(RHS) . 所以LHS = theta(RHS)

Wolfram Alpha seems to agree. Wolfram Alpha似乎同意。

When n is constant, terms that previously were 0 in limit don't disappear but instead you get: n为常数时,以前限制为0不会消失,而是得到:

(k+1) * some constant number / k * (some other constant number)

So it's: 所以是:

(1 + 1/k)*(another constant number) . (1 + 1/k)*(another constant number) So also LHS = theta(RHS) . 所以LHS = theta(RHS)

When proving Θ , you want to prove O and Ω . 证明Θ ,要证明OΩ

Upper bound is proven easily: 上限很容易证明:
log(n(n-1)...(nk)) ≤ log(n^k) = k log n = O(k log n)

For the lower bound, if k ≥ n/2 , then in the product there is n/2 terms greater than n/2 : 对于下限,如果k ≥ n/2 ,则在乘积中有n/2项大于n/2
log(n(n-1)...(nk)) ≥ (n/2)log(n/2) = Ω(n log n) ≥ Ω(k log n)

and if k ≤ n/2 , all terms are greater than n/2 : 如果k ≤ n/2 ,则所有项均大于n/2
log(n(n-1)...(nk)) ≥ log((n/2)^k) = k log(n/2) = Ω(k log n)

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM