简体   繁体   中英

how to create a contiguous 2d array in c++?

I want to create a function that returns a contiguous 2D array in C++.

It is not a problem to create the array using the command:

 int (*v)[cols] = new (int[rows][cols]);

However, I am not sure how to return this array as a general type for a function. The function is:

  NOT_SURE_WHAT_TYPE create_array(int rows, int cols)
  {
        int (*v)[cols] = new (int[rows][cols]);
        return v;
  }

I tried double*[] and double** and both don't work. I wouldn't want to use double*, since I want to access this array from outside as a 2D array.

Related question: How do I declare a 2d array in C++ using new?

If you want to create an array where the data is contiguous and you don't want a 1-dimensional array (ie you want to use the [][] syntax), then the following should work. It creates an array of pointers, and each pointer points to a position into a pool of memory.

#include <iostream>
#include <exception>

template <typename T>
T** create2DArray(unsigned nrows, unsigned ncols, const T& val = T())
{
   if (nrows == 0)
        throw std::invalid_argument("number of rows is 0");
   if (ncols == 0)
        throw std::invalid_argument("number of columns is 0");
   T** ptr = nullptr;
   T* pool = nullptr;
   try
   {
       ptr = new T*[nrows];  // allocate pointers (can throw here)
       pool = new T[nrows*ncols]{val};  // allocate pool (can throw here)

       // now point the row pointers to the appropriate positions in
       // the memory pool
       for (unsigned i = 0; i < nrows; ++i, pool += ncols )
           ptr[i] = pool;

       // Done.
       return ptr;
   }
   catch (std::bad_alloc& ex)
   {
       delete [] ptr; // either this is nullptr or it was allocated
       throw ex;  // memory allocation error
   }
}

template <typename T>
void delete2DArray(T** arr)
{
   delete [] arr[0];  // remove the pool
   delete [] arr;     // remove the pointers
}

int main()
{
   try 
   { 
      double **dPtr = create2DArray<double>(10,10);
      dPtr[0][0] = 10;  // for example
      delete2DArray(dPtr);  // free the memory
   }
   catch(std::bad_alloc& ex)
   {
      std::cout << "Could not allocate array";
   }
}

Note that only 2 allocations are done. Not only is this more efficient due to the lesser amounts of allocations done, we now have a better chance of doing a rollback of the allocated memory if a memory allocation fails, unlike the "traditional" way of allocating a 2D array in non-contiguous memory:

// The "traditional" non-contiguous allocation of a 2D array (assume N x M)
T** ptr;
ptr = new T*[N];
for (int i = 0; i < N; ++i)
   ptr[i] = new T [M]; // <<-- What happens if new[] throws at some iteration?

If new[] throws an exception somewhere during the operation of the for loop, you have to roll back all of the successful calls to new[] that happened previously -- that requires more code and adds complexity.

Note how you deallocate the memory in the contiguous version -- just two calls to delete[] when allocated contiguously instead of a loop calling delete[] for each row.


Also, since the data is in contiguous memory, algorithms, functions, etc. that assume that the data is in contiguous memory, just like a one-dimensional array, can now be used by specifying the start and end range for the M*N matrix:

[&array[0][0], &array[M-1][N])

For example:

std::sort(&myArray[0][0], &myArray[M-1][N]);

will sort the entire matrix in ascending order, starting from index [0][0] up until the last index [M-1][N-1] .

You can improve on the design by making this a true class instead of having allocation / deallocation as 2 separate functions.


Edit: The class is not RAII-like, just as the comment says. I leave that as an exercise for the reader. One thing missing from the code above is the check that nRows and nCols are > 0 when creating such an array.

Edit 2: Added a try-catch to ensure a proper roll back of the memory allocation is done if a std::bad_alloc exception is thrown attempting to allocate memory.


Edit: For a 3 dimensional array example of code similar to the above see this answer . Included is code to roll back allocations if the allocation fails.


Edit: Rudimentary RAII class added:

template <typename T>
class Array2D
{
    T** data_ptr;
    unsigned m_rows;
    unsigned m_cols;

    T** create2DArray(unsigned nrows, unsigned ncols, const T& val = T())
    {
        T** ptr = nullptr;
        T* pool = nullptr;
        try
        {
            ptr = new T*[nrows];  // allocate pointers (can throw here)
            pool = new T[nrows*ncols]{ val };  // allocate pool (can throw here)

            // now point the row pointers to the appropriate positions in
            // the memory pool
            for (unsigned i = 0; i < nrows; ++i, pool += ncols)
                ptr[i] = pool;

            // Done.
            return ptr;
        }
        catch (std::bad_alloc& ex)
        {
            delete[] ptr; // either this is nullptr or it was allocated
            throw ex;  // memory allocation error
        }
    }

public:
    typedef T value_type;
    T** data() {
        return data_ptr;
    }

    unsigned get_rows() const {
        return m_rows;
    }

    unsigned get_cols() const {
        return m_cols;
    }

    Array2D() : data_ptr(nullptr), m_rows(0), m_cols(0) {}
    Array2D(unsigned rows, unsigned cols, const T& val = T())
    {
        if (rows == 0)
            throw std::invalid_argument("number of rows is 0");
        if (cols == 0)
            throw std::invalid_argument("number of columns is 0");
        data_ptr = create2DArray(rows, cols, val);
        m_rows = rows;
        m_cols = cols;
    }

    ~Array2D()
    {
        if (data_ptr)
        {
            delete[] data_ptr[0];  // remove the pool
            delete[] data_ptr;     // remove the pointers
        }
    }

    Array2D(const Array2D& rhs) : m_rows(rhs.m_rows), m_cols(rhs.m_cols)
    {
        data_ptr = create2DArray(m_rows, m_cols);
        std::copy(&rhs.data_ptr[0][0], &rhs.data_ptr[m_rows-1][m_cols], &data_ptr[0][0]);
    }

    Array2D(Array2D&& rhs) noexcept
    {
        data_ptr = rhs.data_ptr;
        m_rows = rhs.m_rows;
        m_cols = rhs.m_cols;
        rhs.data_ptr = nullptr;
    }

    Array2D& operator=(Array2D&& rhs) noexcept
    {
        if (&rhs != this)
        {
            swap(rhs, *this);
            rhs.data_ptr = nullptr;
        }
        return *this;
    }

    void swap(Array2D& left, Array2D& right)
    {
        std::swap(left.data_ptr, right.data_ptr);
        std::swap(left.m_cols, right.m_cols);
        std::swap(left.m_rows, right.m_rows);
    }

    Array2D& operator = (const Array2D& rhs)
    {
        if (&rhs != this)
        {
            Array2D temp(rhs);
            swap(*this, temp);
        }
        return *this;
    }

    T* operator[](unsigned row)
    {
        return data_ptr[row];
    }

    const T* operator[](unsigned row) const
    {
        return data_ptr[row];
    }

    void create(unsigned rows, unsigned cols, const T& val = T())
    {
        *this = Array2D(rows, cols, val);
    }
};

int main()
{
    try
    {
        Array2D<double> dPtr(10, 10);
        std::cout << dPtr[0][0] << " " << dPtr[1][1] << "\n";
    }
    catch (std::exception& ex)
    {
        std::cout << ex.what();
    }
}
 

Unless the size of the two dimensions is known at compile time, your don't have much choice: allocate a single rows*cols array of int s, and roll your own 2D indexing with integer multiplication and addition. Wrapping this in a class can produce a nice-looking syntax for accessing array elements with square bracket operator. Since your array is 2D, you will need to use proxy (AKA "surrogate") objects for the first level of data access.

Here is a small sample code that uses std::vector<T> for maintaining a contiguous memory region in dynamic memory:

template<class T>
class Array2D {
    vector<T> data;
    size_t cols;
public:
    // This is the surrogate object for the second-level indexing
    template <class U>
    class Array2DIndexer {
        size_t offset;
        vector<U> &data;
    public:
        Array2DIndexer(size_t o, vector<U> &dt) : offset(o), data(dt) {}
        // Second-level indexing is done in this function
        T& operator[](size_t index) {
            return data[offset+index];
        }
    };
    Array2D(size_t r, size_t c) : data (r*c), cols(c) {}
    // First-level indexing is done in this function.
    Array2DIndexer<T> operator[](size_t index) {
        return Array2DIndexer<T>(index*cols, data);
    }
};

You can now use Array2D<int> as if it were a built-in C++ array:

Array2D<int> a2d(10, 20);
for (int r = 0 ; r != 10 ; r++) {
    for (int c = 0 ; c != 20 ; c++) {
        a2d[r][c] = r+2*c+1;
    }
}

Running demo on ideone .

Since you're using C++ and not C, I would recommend to use one vector instead of messing around with new/delete.

You can define one contiguous block of memory like this:

std::vector<int> my_matrix(rows*cols);

And now you access this vector in a 2d-array-like way with the formula i*n + j, with i being the row index, j the column index and n the length of a row:

my_matrix[i*n + j];

That's the same as accessing a 2d array with array[i][j]. But now you have the advantage of one contiguous block of memory, you don't need to bother about new/delete and you can easily share and return this vector object with functions.

handling raw memory ressources is often icky. Best shot is a simple wrapper as :

struct array2D : private std::vector<int>
{
  typedef  std::vector<int> base_type;

  array2D() : base_type(), height_(0), width_(0) {}
  array2D(std::size_t h, std::size_t w) : base_type(h*w), height_(h), width_(w);

  int operator()(std::size_t i, std::size_t j) const 
  { 
     return base_type::operator[](i+j*height_); 
  }

  int& operator()(std::size_t i, std::size_t j) 
  { 
     return base_type::operator[](i+j*height_); 
  }

  std::size_t rows() const { return height_; }
  std::size_t cols() const { return width_; }

  private:
  std::size_t height_, width_;
}

private inheritance let you grab all the goodies from vector, just add your 2D constructor. Ressources management is free as vector ctor/dtor will do their magic. Obviously, the i+h*j can be changed to whateever storage order you want.

vector< vector< int > > is 2D but won't be contiguous in memory.

Your function then become :

array2D create_array(int rows, int cols)
{
  return array2D(cols,rows);
}

EDIT:

You can also retrieve other vector interface parts like begin/end or size with the usign clause to make the private inherited member functions public again.

None of the ways of defining a 2D dynamic array in standard C++ are entirely satisfactory in my opinion.

You end up having to roll your own solutions. Luckily there is already a solution in Boost. boost::multi_array :

#include "boost/multi_array.hpp"

template<typename T>
boost::multi_array<T, 2> create_array(int rows, int cols) {
  auto dims = boost::extents[rows][cols];
  return boost::multi_array<T, 2>(dims);
}

int main() {
  auto array = create_array<int>(4, 3);
  array[3][2] = 0;
}

Live demo .

The "Rudimentary RAll" class provided by PaulMcKenzie is an excellent solution. In my use of it I did find a memory leak which is fixed in the version shown below.

The memory leak was due to an issue with Array2D& operator=(Array2D&& rhs) noexcept .

The statement rhs.m_dataPtr = nullPtr needed to be removed in order to allow the rhs destructor to delete the original data (pool and pointers) swapped from lhs.

Here is the corrected code for the "Rudimentary RAll" class provided by PaulMcKenzie

template <typename T>
class Array2D
{
    T** data_ptr;
    unsigned m_rows;
    unsigned m_cols;

    T** create2DArray(unsigned nrows, unsigned ncols, const T& val = T())
    {
        T** ptr = nullptr;
        T* pool = nullptr;
        try
        {
            ptr = new T*[nrows];  // allocate pointers (can throw here)
            pool = new T[nrows*ncols]{ val };  // allocate pool (can throw here)

            // now point the row pointers to the appropriate positions in
            // the memory pool
            for (unsigned i = 0; i < nrows; ++i, pool += ncols)
                ptr[i] = pool;

            // Done.
            return ptr;
        }
        catch (std::bad_alloc& ex)
        {
            delete[] ptr; // either this is nullptr or it was allocated
            throw ex;  // memory allocation error
        }
    }

public:
    typedef T value_type;
    T** data() {
        return data_ptr;
    }

    unsigned get_rows() const {
        return m_rows;
    }

    unsigned get_cols() const {
        return m_cols;
    }

    Array2D() : data_ptr(nullptr), m_rows(0), m_cols(0) {}
    Array2D(unsigned rows, unsigned cols, const T& val = T())
    {
        if (rows == 0)
            throw std::invalid_argument("number of rows is 0");
        if (cols == 0)
            throw std::invalid_argument("number of columns is 0");
        data_ptr = create2DArray(rows, cols, val);
        m_rows = rows;
        m_cols = cols;
    }

    ~Array2D()
    {
        if (data_ptr)
        {
            delete[] data_ptr[0];  // remove the pool
            delete[] data_ptr;     // remove the pointers
        }
    }

    Array2D(const Array2D& rhs) : m_rows(rhs.m_rows), m_cols(rhs.m_cols)
    {
        data_ptr = create2DArray(m_rows, m_cols);
        std::copy(&rhs.data_ptr[0][0], &rhs.data_ptr[m_rows-1][m_cols], &data_ptr[0][0]);
    }

    Array2D(Array2D&& rhs) noexcept
    {
        data_ptr = rhs.data_ptr;
        m_rows = rhs.m_rows;
        m_cols = rhs.m_cols;
        rhs.data_ptr = nullptr;
    }

    Array2D& operator=(Array2D&& rhs) noexcept
    {
        if (&rhs != this)
        {
            swap(rhs, *this);
        }
        return *this;
    }

    void swap(Array2D& left, Array2D& right)
    {
        std::swap(left.data_ptr, right.data_ptr);
        std::swap(left.m_cols, right.m_cols);
        std::swap(left.m_rows, right.m_rows);
    }

    Array2D& operator = (const Array2D& rhs)
    {
        if (&rhs != this)
        {
            Array2D temp(rhs);
            swap(*this, temp);
        }
        return *this;
    }

    T* operator[](unsigned row)
    {
        return data_ptr[row];
    }

    const T* operator[](unsigned row) const
    {
        return data_ptr[row];
    }

    void create(unsigned rows, unsigned cols, const T& val = T())
    {
        *this = Array2D(rows, cols, val);
    }
};

int main()
{
    try
    {
        Array2D<double> dPtr(10, 10);
        std::cout << dPtr[0][0] << " " << a2[0][0] << "\n";
    }
    catch (std::exception& ex)
    {
        std::cout << ex.what();
    }
}

I think you should write a simple class to wrap a 1-dim array. Then you can implement a 2-dim array with operator() overloading for getting values and deconstruct func for release the memory. Code as below:

#include <assert.h>

template <typename T>
class Array_2D
{
private:
    T *data_inside;
public:
    int size[2];
    Array_2D(int row, int column);
    ~Array_2D();

    // 
    T operator()(int index1, int index2){
        return data_inside[get_index(index1, index2)];
    }

    int get_index(int index1, int index2){
        if(index1>=0 and index1<size[0] and index2>=0 and index2<=size[1]){
            return index1*size[0] + index2;
        }else{
            assert("wrong index for array!" == "True");
        }
    }

};

template <typename T>
Array_2D<T>::Array_2D(int row, int column)
{
    size[0] = row;
    size[1] = column;
    data_inside = new T[row*column];
}

template <typename T>
Array_2D<T>::~Array_2D()
{
    // 使用析构函数,自动释放资源
    delete[] data_inside;
}

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM