简体   繁体   中英

C++11 way to index tuple at runtime without using switch

I have a piece of c++11 code similar like below:

switch(var) {
   case 1: dosomething(std::get<1>(tuple));
   case 2: dosomething(std::get<2>(tuple));
   ...
}

Is there any way to remove this large switch? Note that get<var> does not work because var is not constant, but I know var is in small range ie (0-20).

Note that the point here is to avoid using an array that causes an array lookup...

EDIT:

well on the issue of performance, there is a discussion Performance of array of functions over if and switch statements

For my own purpose, I do not argue which one is better.

Here's a version that doesn't use an index sequence:

template <size_t I>
struct visit_impl
{
    template <typename T, typename F>
    static void visit(T& tup, size_t idx, F fun)
    {
        if (idx == I - 1) fun(std::get<I - 1>(tup));
        else visit_impl<I - 1>::visit(tup, idx, fun);
    }
};

template <>
struct visit_impl<0>
{
    template <typename T, typename F>
    static void visit(T& tup, size_t idx, F fun) { assert(false); }
};

template <typename F, typename... Ts>
void visit_at(std::tuple<Ts...> const& tup, size_t idx, F fun)
{
    visit_impl<sizeof...(Ts)>::visit(tup, idx, fun);
}

template <typename F, typename... Ts>
void visit_at(std::tuple<Ts...>& tup, size_t idx, F fun)
{
    visit_impl<sizeof...(Ts)>::visit(tup, idx, fun);
}

DEMO

Here's an unreadably over-generic implementation without recursion. I don't think I'd use this in production - it's a good example of write-only code - but it's interesting that it can be done. ( DEMO ):

#include <array>
#include <cstddef>
#include <initializer_list>
#include <tuple>
#include <iostream>
#include <type_traits>
#include <utility>

template <std::size_t...Is> struct index_sequence {};

template <std::size_t N, std::size_t...Is>
struct build : public build<N - 1, N - 1, Is...> {};

template <std::size_t...Is>
struct build<0, Is...> {
    using type = index_sequence<Is...>;
};

template <std::size_t N>
using make_index_sequence = typename build<N>::type;

template <typename T>
using remove_reference_t = typename std::remove_reference<T>::type;

namespace detail {
template <class Tuple, class F, std::size_t...Is>
void tuple_switch(const std::size_t i, Tuple&& t, F&& f, index_sequence<Is...>) {
  [](...){}(
    (i == Is && (
       (void)std::forward<F>(f)(std::get<Is>(std::forward<Tuple>(t))), false))...
  );
}
} // namespace detail

template <class Tuple, class F>
void tuple_switch(const std::size_t i, Tuple&& t, F&& f) {
  static constexpr auto N =
    std::tuple_size<remove_reference_t<Tuple>>::value;

  detail::tuple_switch(i, std::forward<Tuple>(t), std::forward<F>(f),
                       make_index_sequence<N>{});
}

constexpr struct {
  template <typename T>
  void operator()(const T& t) const {
      std::cout << t << '\n';
  }
} print{};

int main() {

  {
    auto const t = std::make_tuple(42, 'z', 3.14, 13, 0, "Hello, World!");

    for (std::size_t i = 0; i < std::tuple_size<decltype(t)>::value; ++i) {
      tuple_switch(i, t, print);
    }
  }

  std::cout << '\n';

  {
    auto const t = std::array<int, 4>{{0,1,2,3}};
    for (std::size_t i = 0; i < t.size(); ++i) {
      tuple_switch(i, t, print);
    }
  }
}

It's possible but it's pretty ugly:

#include <tuple>
#include <iostream>

template<typename T>
void doSomething(T t) { std::cout << t << '\n';}

template<int... N>
struct Switch;

template<int N, int... Ns>
struct Switch<N, Ns...>
{
  template<typename... T>
    void operator()(int n, std::tuple<T...>& t)
    {
      if (n == N)
        doSomething(std::get<N>(t));
      else
        Switch<Ns...>()(n, t);
    }
};

// default
template<>
struct Switch<>
{
  template<typename... T>
    void operator()(int n, std::tuple<T...>& t) { }
};

int main()
{
  std::tuple<int, char, double, int, int, const char*> t;
  Switch<1, 2, 4, 5>()(4, t);
}

Just list each constant that would have been a case label in the original switch in the template argument list for the Switch specialization.

For this to compile, doSomething(std::get<N>(t)) must be a valid expression for every N in the argument list of the Switch specialization ... but that's true of the switch statement too.

For a small number of cases it compiles to the same code as a switch , I didn't check if it scales to large numbers of cases.

If you don't want to type out every number in Switch<1, 2, 3, 4, ... 255> then you could create a std::integer_sequence and then use that to instantiate the Switch :

template<size_t... N>
Switch<N...>
make_switch(std::index_sequence<N...>)
{
  return {};
}

std::tuple<int, char, double, int, int, const char*> t;
make_switch(std::make_index_sequence<4>{})(3, t);

This creates a Switch<0,1,2,3> so if you don't want the 0 case you'd need to manipulate the index_sequence , eg this chops the zero off the front of the list:

template<size_t... N>
Switch<N...>
make_switch(std::index_sequence<0, N...>)
{
  return {};
}

Unfortunately GCC crashes when trying to compile make_index_sequence<255> as it involves too much recursion and uses too much memory, and Clang rejects it by default too (because it has a very low default for -ftemplate-instantiation-depth ) so this isn't a very practical solution!

No need to get all cray cray in c++17.

// Calls your func with tuple element.
template <class Func, class Tuple, size_t N = 0>
void runtime_get(Func func, Tuple& tup, size_t idx) {
    if (N == idx) {
        std::invoke(func, std::get<N>(tup));
        return;
    }

    if constexpr (N + 1 < std::tuple_size_v<Tuple>) {
        return runtime_get<Func, Tuple, N + 1>(func, tup, idx);
    }
}

And runtime tuple_element for fun.

// Calls your func with a pointer to the type.
// Uses a pointer so the element is not initialized.
template <class Tuple, class Func, size_t N = 0>
void runtime_tuple_element(Func func, size_t idx) {
    if (N == idx) {
        std::tuple_element_t<N, Tuple>* ptr = nullptr;
        std::invoke(func, ptr);
        return;
    }

    if constexpr (N + 1 < std::tuple_size_v<Tuple>) {
        return runtime_tuple_element<Tuple, Func, N + 1>(func, idx);
    }
}

Here is C++17 solution without compile-time recursion (which is bad because it degrades your compile time) and without switch-case:

template<typename TPred, typename ...Ts, size_t ...Is>
void invoke_at_impl(std::tuple<Ts...>& tpl, std::index_sequence<Is...>, size_t idx, TPred pred)
{
    ((void)(Is == idx && (pred(std::get<Is>(tpl)), true)), ...);
    // for example: std::tuple<int, float, bool> `transformations` (idx == 1):
    //
    // Is... expansion    -> ((void)(0 == idx && (pred(std::get<0>(tpl)), true)), (void)(1 == idx && (pred(std::get<1>(tpl)), true)), (void)(2 == idx && (pred(std::get<2>(tpl)), true)));
    //                    -> ((void)(false && (pred(std::get<0>(tpl)), true)), (void)(true && (pred(std::get<1>(tpl)), true)), (void)(false && (pred(std::get<2>(tpl)), true)));
    // '&&' short-circuit -> ((void)(false), (void)(true && (pred(std::get<1>(tpl)), true)), (void)(false), true)));
    //
    // i.e. pred(std::get<1>(tpl) will be executed ONLY for idx == 1
}

template<typename TPred, typename ...Ts>
void invoke_at(std::tuple<Ts...>& tpl, size_t idx, TPred pred)
{
    invoke_at_impl(tpl, std::make_index_sequence<sizeof...(Ts)>{}, idx, pred);
}

Several notes here:

  1. You CAN achieve same result in C++11 but instead of using C++17 fold-expressions you should use well-known 'hack' with local array (by expanding a pack inside array's initialization list). Something like:

    std::array<bool, sizeof...(Ts)> arr = { ((Is == idx && (pred(std::get<Is>(tpl)), true)), ...) };

  2. We are using comma-operator for both Is... pack-expansion AND pred execution, ie all operands of the comma-operator will be executed and the result of the whole comma-expression is the result of the last operand.

  3. We are casting each operand to void in order to silence compiler ( unused expression value or something like this)

I modified Oktalist's answer to make it slightly more robust:

  • make visit_at method constexpr
  • allow visitor to pass any number of arguments (visited tuple element is still required first parameter)
  • allow visitor to return a value
  • make visit_at method compatible with any std::get -compatible type (eg, std::array )

For completeness sake, I made it noexcept as well, though that is a mess (where is noexcept(auto) already?).

namespace detail
{
    template<std::size_t I>
    struct visit_impl
    {
        template<typename Tuple, typename F, typename ...Args>
        inline static constexpr int visit(Tuple const &tuple, std::size_t idx, F fun, Args &&...args) noexcept(noexcept(fun(std::get<I - 1U>(tuple), std::forward<Args>(args)...)) && noexcept(visit_impl<I - 1U>::visit(tuple, idx, fun, std::forward<Args>(args)...)))
        {
            return (idx == (I - 1U) ? (fun(std::get<I - 1U>(tuple), std::forward<Args>(args)...), void(), 0) : visit_impl<I - 1U>::visit(tuple, idx, fun, std::forward<Args>(args)...));
        }

        template<typename R, typename Tuple, typename F, typename ...Args>
        inline static constexpr R visit(Tuple const &tuple, std::size_t idx, F fun, Args &&...args) noexcept(noexcept(fun(std::get<I - 1U>(tuple), std::forward<Args>(args)...)) && noexcept(visit_impl<I - 1U>::template visit<R>(tuple, idx, fun, std::forward<Args>(args)...)))
        {
            return (idx == (I - 1U) ? fun(std::get<I - 1U>(tuple), std::forward<Args>(args)...) : visit_impl<I - 1U>::template visit<R>(tuple, idx, fun, std::forward<Args>(args)...));
        }
    };

    template<>
    struct visit_impl<0U>
    {
        template<typename Tuple, typename F, typename ...Args>
        inline static constexpr int visit(Tuple const&, std::size_t, F, Args&&...) noexcept
        {
            return 0;
        }

        template<typename R, typename Tuple, typename F, typename ...Args>
        inline static constexpr R visit(Tuple const&, std::size_t, F, Args&&...) noexcept(noexcept(R{}))
        {
            static_assert(std::is_default_constructible<R>::value, "Explicit return type of visit_at method must be default-constructible");
            return R{};
        }
    };
}

template<typename Tuple, typename F, typename ...Args>
inline constexpr void visit_at(Tuple const &tuple, std::size_t idx, F fun, Args &&...args) noexcept(noexcept(detail::visit_impl<std::tuple_size<Tuple>::value>::visit(tuple, idx, fun, std::forward<Args>(args)...)))
{
    detail::visit_impl<std::tuple_size<Tuple>::value>::visit(tuple, idx, fun, std::forward<Args>(args)...);
}

template<typename R, typename Tuple, typename F, typename ...Args>
inline constexpr R visit_at(Tuple const &tuple, std::size_t idx, F fun, Args &&...args) noexcept(noexcept(detail::visit_impl<std::tuple_size<Tuple>::value>::template visit<R>(tuple, idx, fun, std::forward<Args>(args)...)))
{
    return detail::visit_impl<std::tuple_size<Tuple>::value>::template visit<R>(tuple, idx, fun, std::forward<Args>(args)...);
}

DEMO (demo is not C++11 (due to laziness), but the implementation above should be)

I know this thread is quite old, but i stumbled across it in my attempt to replace a virtual dispatch through a static one in my code base.

In contrast to all solutions presented so far this one uses a binary search instead of a linear search, so in my understanding it should be O(log(n)) instead of O(n) . Other than that it is just a modified version of the solution presented by Oktalist

#include <tuple>
#include <cassert>

template <std::size_t L, std::size_t U>
struct visit_impl
{
    template <typename T, typename F>
    static void visit(T& tup, std::size_t idx, F fun)
    {
        static constexpr std::size_t MEDIAN = (U - L) / 2 + L;
        if (idx > MEDIAN)
            visit_impl<MEDIAN, U>::visit(tup, idx, fun);
        else if (idx < MEDIAN)
            visit_impl<L, MEDIAN>::visit(tup, idx, fun);
        else
            fun(std::get<MEDIAN>(tup));
    }
};

template <typename F, typename... Ts>
void visit_at(const std::tuple<Ts...>& tup, std::size_t idx, F fun)
{
    assert(idx <= sizeof...(Ts));
    visit_impl<0, sizeof...(Ts)>::visit(tup, idx, fun);
}

template <typename F, typename... Ts>
void visit_at(std::tuple<Ts...>& tup, std::size_t idx, F fun)
{
    assert(idx <= sizeof...(Ts));
    visit_impl<0, sizeof...(Ts)>::visit(tup, idx, fun);
}

/* example code */

/* dummy template to generate different callbacks */
template <int N>
struct Callback
{
    int Call() const
    {
        return N;
    }
};

template <typename T>
struct CallbackTupleImpl;

template <std::size_t... Indx>
struct CallbackTupleImpl<std::index_sequence<Indx...>>
{
    using type = std::tuple<Callback<Indx>...>;
};

template <std::size_t N>
using CallbackTuple = typename CallbackTupleImpl<std::make_index_sequence<N>>::type;

int main()
{
    CallbackTuple<100> myTuple;
    int value{};
    visit_at(myTuple, 42, [&value](auto& pc) { value = pc.Call(); });
    assert(value == 42);
}

With this solution the number of calls to visit_impl is 7 . With the linear search approach it would be 58 instead.

Another interesting solution presented here even manages to provide O(1) access. However at the cost of more storage, since a function map with the size O(n) is generated.

For c++11 here is a concise approach that returns a pointer:

template <typename Tuple, long template_index = std::tuple_size<Tuple>::value>
struct tuple_address {
  static void * of(Tuple & tuple, long function_index) {
    if (template_index - 1 == function_index) {
      return &std::get<template_index - 1>(tuple);
    } else {
      return tuple_address<Tuple, template_index - 1>::of(tuple, function_index);
    }
  }
};
template <typename Tuple>
struct tuple_address<Tuple, 0> {
  static void * of(Tuple & tuple, long function_index) {
    return 0;
  }
};
template <typename Tuple>
void * tuple_address_of(Tuple & tuple, long index) {
  return tuple_address<Tuple>::of(tuple, index);
}

C++17 non-recursive

template <typename T>
inline constexpr size_t tuple_size_v = std::tuple_size<T>::value;

template <typename T, typename F, std::size_t... I>
constexpr void visit_impl(T& tup, const size_t idx, F fun, std::index_sequence<I...>)
{
    assert(idx < tuple_size_v<T>);
    ((I == idx ? fun(std::get<I>(tup)) : void()), ...);
}

template <typename F, typename... Ts, typename Indices = std::make_index_sequence<sizeof...(Ts)>>
constexpr void visit_at(std::tuple<Ts...>& tup, const size_t idx, F fun)
{
    visit_impl(tup, idx, fun, Indices {});
}

template <typename F, typename... Ts, typename Indices = std::make_index_sequence<sizeof...(Ts)>>
constexpr void visit_at(const std::tuple<Ts...>& tup, const size_t idx, F fun)
{
    visit_impl(tup, idx, fun, Indices {});
}

Using:

auto tuple = std::tuple { 1, 2.5, 3, 'Z' };
// print it to cout
for (size_t i = 0; i < tuple_size_v<decltype(tuple)>; ++i) {
    visit_at(tuple, i, [](auto&& arg) {
        using T = std::decay_t<decltype(arg)>;
        std::cout << *typeid(T).name() << arg << ' ';
    });
}

Output: i1 d2.5 i3 cZ

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM