简体   繁体   中英

Solving system of nonlinear equations with Python, Euler's formula

I am working on solving and analyzing a system of differential equations in Python. First did I solve it with help of scipy.integrate dopri5 and scopes Odeint. Which worked out fine. Then I tried to solve the equations with use of the Euler's method. The equations and code is as followed,

dj = -mu*(J**3 - (C - C0)*J - F)

dc = J + C*F + a*J**2

df = J*F - C



T = 100
dt = 0.001
t = np.linspace(0, T, int(T/dt)+1)
j = np.zeros(len(t))
c = np.zeros(len(t))
f = np.zeros(len(t))

# Initial condition
j[0] = 0.1
c[0] = -0.5
f[0] = 0.1

a = 0.3025
C0 = 0.5
mu = 50

for i in range(len(t)):
    j[i+1] = j[i] + (-mu * (j[i]**3 - (c[i] - C0)*j[i] - f[i]))*dt
    c[i+1] = c[i] + (j[i] + c[i] * f[i] + (a * j[i])**2)*dt
    f[i+1] = f[i] + (j[i] * f[i] - c[i])*dt

Is there any reason why the Euler's method should not work when both the other two are?

In the first iteration, i is 0, and your first line of the loop essentially is:

j[0] = j[-1] + (-mu * (j[-1]**3 - (c[-1] - C0)*j[-1] - f[-1]))*dt

j[-1] is the last element of j , just like c[-1] is the last element of c , etc. Initially they are all zeros, so j[0] becomes a 0, too, which overwrites the initial conditions. To fix this problem, change range(len(t)) to range(1,len(t)) . (The model diverges after the first 9200 steps, anyway.)

As DYZ says, your calculation is incorrect on the first loop iteration because j[-1] is the last element of j , which you've initialised to zero.

However, your code wastes a lot of RAM. I assume you just want arrays containing T results, plus the initial values, rather than the results calculated on every step. The code below achieves that via a double for loop. We aren't really getting any benefit from Numpy in this code, so I don't bother importing it.

Note that Euler integration is not very accurate, and you generally need to use a much smaller step size than what's required by more sophisticated integration algorithms. As DYZ mentions, with your current step size the calculation diverges before the loop finishes.

Here's a modified version of your code using a smaller step size.

T = 100
dt = 0.00001
steps = int(T / dt)
substeps = int(steps / T)

# Recalculate `dt` to compensate for possible truncation 
# in the `steps` and `substeps` calculations
dt = 1.0 / substeps
print('steps, substeps, dt:', steps, substeps, dt)

a = 0.3025
C0 = 0.5
mu = 50

#dj = -mu*(J**3 - (C - C0)*J - F)
#dc = J + C*F + a*J**2
#df = J*F - C

# Initial condition
j = 0.1
c = -0.5
f = 0.1

jlst, clst, flst = [j], [c], [f]
for i in range(T):
    for _ in range(substeps):
        j1 = j + (-mu * (j**3 - (c - C0)*j - f))*dt
        c1 = c + (j + c * f + (a * j)**2)*dt
        f1 = f + (j * f - c)*dt
        j, c, f = j1, c1, f1

    jlst.append(j)
    clst.append(c)
    flst.append(f)

def round_seq(seq, places=6):
    return [round(u, places) for u in seq]

print('j:', round_seq(jlst), end='\n\n')
print('c:', round_seq(clst), end='\n\n')
print('f:', round_seq(flst), end='\n\n')

output

steps, substeps, dt: 10000000 100000 1e-05
j: [0.1, 0.585459, 1.26718, 3.557956, -1.311867, -0.647698, -0.133683, 0.395812, 0.964856, 3.009683, -2.025674, -1.047722, -0.48872, 0.044296, 0.581284, 1.245423, 14.725407, -1.715456, -0.907364, -0.372118, 0.167733, 0.705257, 1.511711, -3.588555, -1.476817, -0.778593, -0.253874, 0.289294, 0.837128, 1.985792, -2.652462, -1.28088, -0.657113, -0.132971, 0.409071, 0.983504, 3.229393, -2.1809, -1.113977, -0.539586, -0.009829, 0.528546, 1.156086, 8.23469, -1.838582, -0.967078, -0.423261, 0.113883, 0.650319, 1.381138, 12.045565, -1.575015, -0.833861, -0.305952, 0.23632, 0.778052, 1.734888, -2.925769, -1.362437, -0.709641, -0.186249, 0.356775, 0.917051, 2.507782, -2.367126, -1.184147, -0.590753, -0.063942, 0.476121, 1.07614, 5.085211, -1.976542, -1.029395, -0.474206, 0.059772, 0.596505, 1.273214, 17.083466, -1.682855, -0.890842, -0.357555, 0.182944, 0.721096, 1.554496, -3.331861, -1.450497, -0.763182, -0.239007, 0.30425, 0.85435, 2.076595, -2.584081, -1.258788, -0.642362, -0.117774, 0.423883, 1.003181, 3.521072, -2.132709, -1.094792, -0.525123]

c: [-0.5, -0.302644, 0.847742, 12.886781, 0.177404, -0.423405, -0.569541, -0.521669, -0.130084, 7.97828, -0.109606, -0.363033, -0.538874, -0.61005, -0.506872, 0.05076, 216.678959, -0.198445, -0.408569, -0.566869, -0.603713, -0.451729, 0.58959, 2.252504, -0.246645, -0.451, -0.588697, -0.587898, -0.375758, 2.152898, -0.087229, -0.295185, -0.49006, -0.603411, -0.562389, -0.263696, 8.901196, -0.132332, -0.342969, -0.525087, -0.609991, -0.526417, -0.077251, 67.082608, -0.177771, -0.389092, -0.555341, -0.607658, -0.47794, 0.293664, 147.817033, -0.225425, -0.432796, -0.579951, -0.595996, -0.412269, 1.235928, -0.037058, -0.273963, -0.473412, -0.597912, -0.574782, -0.318837, 4.581828, -0.113301, -0.3222, -0.51029, -0.608168, -0.543547, -0.172371, 24.718184, -0.157526, -0.369151, -0.542732, -0.609811, -0.500922, 0.09504, 291.915024, -0.204371, -0.414, -0.56993, -0.602265, -0.443622, 0.700005, 0.740665, -0.25268, -0.456048, -0.590933, -0.585265, -0.36427, 2.528225, -0.093699, -0.301181, -0.494644, -0.60469, -0.558516, -0.245806, 10.941068, -0.137816, -0.348805, -0.52912]

f: [0.1, 0.68085, 1.615135, 1.01107, -2.660947, -0.859348, -0.134789, 0.476782, 1.520241, 4.892319, -9.514924, -2.041217, -0.61413, 0.060247, 0.792463, 2.510586, 11.393914, -6.222736, -1.559576, -0.438133, 0.200729, 1.033274, 3.348756, -39.664752, -4.304545, -1.201378, -0.282146, 0.349631, 1.331995, 4.609547, -20.169056, -3.104072, -0.923759, -0.138225, 0.513633, 1.716341, 6.739864, -11.717002, -2.307614, -0.699883, 7.4e-05, 0.700823, 2.22957, 11.017447, -7.434886, -1.751919, -0.512171, 0.138566, 0.922012, 2.9434, -30.549886, -5.028825, -1.346261, -0.348547, 0.282981, 1.19254, 3.987366, -26.554232, -3.566328, -1.0374, -0.200198, 0.439487, 1.535198, 5.645421, -14.674838, -2.619369, -0.792589, -0.060175, 0.615387, 1.985246, 8.779969, -8.991742, -1.972575, -0.590788, 0.077534, 0.820118, 2.599728, 8.879606, -5.928246, -1.509453, -0.417854, 0.218635, 1.066761, 3.477148, -36.053938, -4.124934, -1.163178, -0.263755, 0.369033, 1.37438, 4.811848, -18.741635, -2.987496, -0.893457, -0.120864, 0.535433, 1.771958, 7.117055, -11.027021, -2.227847, -0.674889]

That takes about 75 seconds on my old 2GHz machine.

Using dt = 0.000005 (which takes almost 2 minutes on this machine) the final values of j , c , and f are -0.524774, -0.529217, -0.674293, respectively, so it looks like we're beginning to get convergence.


Thanks to LutzL for pointing out that dt may need adjusting because of the rounding in the steps and substeps calculations.

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM