简体   繁体   中英

Recreating R Quantile Type 2 in Numpy

I'm migrating some legacy code from R to Python and I'm having trouble matching the quantile results with numpy percentile .

Given the following list of numbers:

a1 = [
    5.75,6.13333333333333,7.13636363636364,9,10.1,4.80952380952381,8.82926829268293,4.7906976744186,3.83333333333333,6,6.1,
    8.88235294117647,30,5.7,3.98507462686567,6.83333333333333,8.39805825242718,4.78260869565217,7.26356589147287,5.67857142857143,
    3.58333333333333,6.69230769230769,14.3333333333333,14.3333333333333,5.125,5.16216216216216,5.36363636363636,10.7142857142857,
    4.90909090909091,7.5,8,6,6.93939393939394,10.4,6,6.8,5.33333333333333,10.3076923076923,4.5625,5.4,6.44,3.36363636363636,
    11.1666666666667,4.5,7.35714285714286,10.6363636363636,9.26746031746032,3.83333333333333,5.75,9.14285714285714,8.27272727272727,
    5,5.92307692307692,5.23076923076923,4.09375,6.25,4.63888888888889,6.07142857142857,5,5.42222222222222,3.93892045454545,4.8,
    8.71428571428571,6.25925925925926,4.12,5.30769230769231,4.26086956521739,5.22222222222222,4.64285714285714,5,3.64705882352941,
    5.33333333333333,3.65217391304348,3.54166666666667,10.0952380952381,3.38235294117647,8.67123287671233,2.66666666666667,3.5,4.875,
    4.5,6.2,5.45454545454545,4.89189189189189,4.71428571428571,1,5.33333333333333,6.09090909090909,4.36756756756757,6,5.17197452229299,
    4.48717948717949,5.01219512195122,4.83098591549296,5.25,8.52,5.47692307692308,5.45454545454545,8.6578947368421,8.35714285714286,3.25,
    8.5,4,5.95652173913043,7.05882352941176,7.5,8.6,8.49122807017544,5.14285714285714,4,13.3294117647059,9.55172413793103,5.57446808510638,
    4.5,8,4.11764705882353,3.9,5.14285714285714,6,4.66666666666667,6,3.75,4.93333333333333,4.5,5.21666666666667,6.53125,6,7,7.28333333333333,
    7.34615384615385,7.15277777777778,8.07936507936508,11.609756097561
]

Using quantile in R such that

quantile(a1, probs=.05, type=2)

Gives a results of 3.541667

Trying all of the interpolation methods in numpy to find the same result:

{x:np.percentile(a1,q=5, interpolation=x) for x in ['linear','lower','higher','nearest','midpoint']}

Yields

{'linear': 3.566666666666666,
 'lower': 3.54166666666667,
 'higher': 3.58333333333333,
 'nearest': 3.58333333333333,
 'midpoint': 3.5625}

As we can see the lower interpolation method returns the same result as R quantile type 2

However again with a different quantile in R we get different results:

quantile(a1, probs=.95, type=2)

Gives a result of 10.71429

And with numpy:

{x:np.percentile(a1,q=95, interpolation=x) for x in ['linear','lower','higher','nearest','midpoint']}

Yields

{'linear': 10.667532467532439,
 'lower': 10.6363636363636,
 'higher': 10.7142857142857,
 'nearest': 10.6363636363636,
 'midpoint': 10.67532467532465}

In this case the higher interpolation method returns the same result

I'm hoping that someone familiar enough w/the R quantile types can help me reproduce the same quantile logic in numpy.

You can implement this yourself. With type=2 it's a rather simple calculation. You either take the next highest order statistic or at a discontinuity (ie 100 values and you want the p=0.06, which falls exactly on the 6th value) you take the average of that order statistic and the next greatest order statistic.

import numpy as np

def R_type2(arr, p):
    """
    arr : array-like
    p : float between [0, 1]
    """
    #m=0 for Q_2(p) in R
    x = np.sort(arr)
    n = len(x)

    aleph = n*p
    k = np.floor(np.array(aleph).clip(1, n-1)).astype(int)
    gamma = {False: 1, True: 0.5}.get(aleph==k)   # Discontinuity or not

    # Deal with case where it should be smallest value 
    if aleph < 1:
        return x[k-1]  # x[0]
    else:
        return (1.-gamma)*x[k-1] + gamma*x[k]


R_type2(a1, 0.05)
#3.54166666666667

R_type2(a1, 0.95)
#10.7142857142857

A word of caution. k will be an integer while n*p is a float. In general it's a very bad idea to do aleph==k because this leads to problems with floating point inaccuracies. For instance with 100 numbers p=0.07 is NOT considered a discontinuity because 0.07 cannot be represented precisely . However, because R seems to implement a pure equality check I left it like the above for consistency.

I personally would favor changing from the equaltiy: {False: 1, True: 0.5}.get(aleph==k) to {False: 1, True: 0.5}.get(np.isclose(aleph,k)) that way floating point issues don't become a problem.

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM