简体   繁体   中英

boost thread pool

I need a threadpool for my application, and I'd like to rely on standard (C++11 or boost) stuff as much as possible. I realize there is an unofficial(!) boost thread pool class, which basically solves what I need, however I'd rather avoid it because it is not in the boost library itself -- why is it still not in the core library after so many years?

In some posts on this page and elsewhere, people suggested using boost::asio to achieve a threadpool like behavior. At first sight, that looked like what I wanted to do, however I found out that all implementations I have seen have no means to join on the currently active tasks, which makes it useless for my application. To perform a join, they send stop signal to all the threads and subsequently join them. However, that completely nullifies the advantage of threadpools in my use case, because that makes new tasks require the creation of a new thread.

What I want to do is:

ThreadPool pool(4);
for (...)
{
    for (int i=0;i<something;i++)
        pool.pushTask(...);
    pool.join();
    // do something with the results
}

Can anyone suggest a solution (except for using the existing unofficial thread pool on sourceforge)? Is there anything in C++11 or core boost that can help me here?

At first sight, that looked like what I wanted to do, however I found out that all implementations I have seen have no means to join on the currently active tasks, which makes it useless for my application. To perform a join, they send stop signal to all the threads and subsequently join them. However, that completely nullifies the advantage of threadpools in my use case, because that makes new tasks require the creation of a new thread.

I think you might have misunderstood the asio example:

IIRC (and it's been a while) each thread running in the thread pool has called io_service::run which means that effectively each thread has an event loop and a scheduler. To then get asio to complete tasks you post tasks to the io_service using the io_service::post method and asio's scheduling mechanism takes care of the rest. As long as you don't call io_service::stop , the thread pool will continue running using as many threads as you started running (assuming that each thread has work to do or has been assigned a io_service::work object).

So you don't need to create new threads for new tasks, that would go against the concept of a threadpool.

Have each task class derive from a Task that has an 'OnCompletion(task)' method/event. The threadpool threads can then call that after calling the main run() method of the task.

Waiting for a single task to complete is then easy. The OnCompletion() can perform whatever is required to signal the originating thread, signaling a condvar, queueing the task to a producer-consumer queue, calling SendMessage/PostMessage API's, Invoke/BeginInvoke, whatever.

If an oringinating thread needs to wait for several tasks to all complete, you could extend the above and issue a single 'Wait task' to the pool. The wait task has its own OnCompletion to communicate the completion of other tasks and has a thread-safe 'task counter', (atomic ops or lock), set to the number of 'main' tasks to be issued. The wait task is issued to the pool first and the thread that runs it waits on a private 'allDone' condvar in the wait task. The 'main' tasks are then issued to the pool with their OnCompletion set to call a method of the wait task that decrements the task counter towards zero. When the task counter reaches zero, the thread that achieves this signals the allDone condvar. The wait task OnCompletion then runs and so signals the completion of all the main tasks.

Such a mechansism does not require the continual create/terminate/join/delete of threadpool threads, places no restriction on how the originating task needs to be signaled and you can issue as many such task-groups as you wish. You should note, however, that each wait task blocks one threadpool thread, so make sure you create a few extra threads in the pool, (not usually any problem).

This seems like a job for boost::futures . The example in the docs seems to demonstrate exactly what you're looking to do.

Joining a thread mean stop for it until it stop, and if it stop and you want to assign a new task to it, you must create a new thread. So in your case you should wait for a condition (for example boost::condition_variable ) to indicate end of tasks. So using this technique it is very easy to implement it using boost::asio and boost::condition_variable . Each thread call boost::asio::io_service::run and tasks will be scheduled and executed on different threads and at the end, each task will set a boost::condition_variable or event decrement a std::atomic to indicate end of the job! that's really easy, isn't it?

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM