繁体   English   中英

从Python SciPy curve_fit获得更多优化结果

[英]Getting more refined results from Python SciPy curve_fit

我有以下Python(v2.7.14)代码,它使用SciPy(v1.0.1)中的curve_fit查找指数衰减函数的参数。 大多数时候,我会得到合理的结果。 有时,尽管找到的参数相对于原始图形绘制时看起来会很好,但我有时还是会得到一些超出预期范围的结果。

首先,我对指数衰减公式的理解来自https://en.wikipedia.org/wiki/Exponential_decay ,我将其翻译为Python:


y = a * numpy.exp(-b * x) + c

在哪里:

  • a是数据的初始值
  • b是衰减率,它是信号从初始值变为1 / e时的倒数
  • c是一个偏移量,因为我正在处理数据中永远不会达到零的非负值
  • x是当前时间

该脚本考虑到要拟合非负数据,并适当地抵消了初始猜测。 但是,即使没有猜测,也没有使用最大/最小值(而不是第一个/最后一个值)和我尝试过的其他随机方法进行补偿,我似乎也无法获得curve_fit在麻烦的数据集上产生有意义的值。

我的假设是,麻烦的数据集没有足够的曲线可以拟合而不会超出数据范围。 我查看了curve_fit的bounds参数,并认为这可能是一个合理的选择。 我不确定什么将使计算的上下限更好,或者实际上是否是我正在寻找的选项。

这是代码。 注释掉的代码是我尝试过的事情。


#!/usr/local/bin/python

import numpy as numpy
from scipy.optimize import curve_fit
import matplotlib.pyplot as pyplot

def exponential_decay(x, a, b, c):
    return a * numpy.exp(-b * x) + c

def fit_exponential(decay_data, time_data, decay_time):
    # The start of the curve is offset by the last point, so subtract
    guess_a = decay_data[0] - decay_data[-1]
    #guess_a = max(decay_data) - min(decay_data)

    # The time that it takes for the signal to reach 1/e becomes guess_b
    guess_b = 1/decay_time

    # Since this is non-negative data, above 0, we use the last data point as the baseline (c)
    guess_c = decay_data[-1]
    #guess_c = min(decay_data)

    guess=[guess_a, guess_b, guess_c]
    print "guess: {0}".format(guess)

    #popt, pcov = curve_fit(exponential_decay, time_data, decay_data, maxfev=20000)
    popt, pcov = curve_fit(exponential_decay, time_data, decay_data, p0=guess, maxfev=20000)

    #bound_lower = [0.05, 0.05, 0.05]
    #bound_upper = [decay_data[0]*2, guess_b * 10, decay_data[-1]]
    #print "bound_lower: {0}".format(bound_lower)
    #print "bound_upper: {0}".format(bound_upper)
    #popt, pcov = curve_fit(exponential_decay, time_data, decay_data, p0=guess, bounds=[bound_lower, bound_upper], maxfev=20000)

    a, b, c = popt

    print "a: {0}".format(a)
    print "b: {0}".format(b)
    print "c: {0}".format(c)

    plot_fit = exponential_decay(time_data, a, b, c)

    pyplot.plot(time_data, decay_data, 'g', label='Data')
    pyplot.plot(time_data, plot_fit, 'r', label='Fit')
    pyplot.legend()
    pyplot.show()

print "Gives reasonable results"
time_data = numpy.array([0.0,0.040000000000000036,0.08100000000000018,0.12200000000000011,0.16200000000000014,0.20300000000000007,0.2430000000000001,0.28400000000000003,0.32400000000000007,0.365,0.405,0.44599999999999995,0.486,0.5269999999999999,0.567,0.6079999999999999,0.6490000000000002,0.6889999999999998,0.7300000000000002,0.7700000000000002,0.8110000000000002,0.8510000000000002,0.8920000000000001,0.9320000000000002,0.9730000000000001])
decay_data = numpy.array([1.342146870531986,1.405586070225509,1.3439802492549762,1.3567811728250267,1.2666276377825874,1.1686375326985337,1.216119360088685,1.2022841507836042,1.1926979408026064,1.1544395213303447,1.1904416926531907,1.1054720201415882,1.112100683833435,1.0811434035632939,1.1221671794680403,1.0673295063196415,1.0036146509494743,0.9984005680821595,1.0134498134883763,0.9996920772051201,0.929782730581616,0.9646581154122312,0.9290690593684447,0.8907360533169936,0.9121560047238627])
fit_exponential(decay_data, time_data, 0.567)

print

print "Gives results that are way outside my expectations"
time_data = numpy.array([0.0,0.040000000000000036,0.08099999999999996,0.121,0.16199999999999992,0.20199999999999996,0.24300000000000033,0.28300000000000036,0.32399999999999984,0.3650000000000002,0.40500000000000025,0.44599999999999973,0.48599999999999977,0.5270000000000001,0.5670000000000002,0.6079999999999997,0.6479999999999997,0.6890000000000001,0.7290000000000001,0.7700000000000005,0.8100000000000005,0.851,0.8920000000000003,0.9320000000000004,0.9729999999999999,1.013,1.0540000000000003])
decay_data = numpy.array([1.4401611921948776,1.3720688158534153,1.3793465463227048,1.2939909686762128,1.3376345321949346,1.3352710161631154,1.3413634841956348,1.248705138603995,1.2914294791901497,1.2581763134585313,1.246975264018646,1.2006447776495062,1.188232179689515,1.1032789127515186,1.163294324147017,1.1686263160765304,1.1434009568472243,1.0511578409946472,1.0814520440570896,1.1035953824496334,1.0626893599266163,1.0645580326776076,0.994855722989818,0.9959891485338087,0.9394584009825916,0.949504060086646,0.9278639431146273])
fit_exponential(decay_data, time_data, 0.6890000000000001)

这是文本输出:


Gives reasonable results
guess: [0.4299908658081232, 1.7636684303350971, 0.9121560047238627]
a: 1.10498934435
b: 0.583046565885
c: 0.274503681044

Gives results that are way outside my expectations
guess: [0.5122972490802503, 1.4513788098693758, 0.9278639431146273]
a: 742.824622191
b: 0.000606308344957
c: -741.41398516

最值得注意的是,与第二组的结果,对于一个值是非常高的,与c是同样低在负的规模,和b为一个非常小的十进制数的值。

这是第一个数据集的图形,给出了合理的结果。 这是第一个数据集的图形,给出了合理的结果。

这是第二个数据集的图形,效果不佳。 这是第二个数据集的图形,效果不佳。

请注意,尽管线条实际上没有很好的曲线,但图形本身可以正确绘制。

我的问题:

  • 我用curve_fit实现的指数衰减算法正确吗?
  • 我最初的猜测参数是否足够好?
  • bounds参数是否是此问题的正确解决方案? 如果是这样,什么是确定下限和上限的好方法?
  • 我在这里错过了什么吗?

再次谢谢你!

当您说第二个拟合所提供的结果超出您的期望“并且超出了您的期望”,并且尽管第二个图形“正确绘制”时,该线并没有真正“具有良好的曲线拟合”,您在正确的道路上理解了什么是继续。 我认为您只是迷失了一部分。

第二张图非常适合看起来确实是线性的曲线。 这可能意味着您实际上没有足够的数据变化(很可能低于噪声水平)来检测它是指数衰减。

我敢打赌,如果您不仅打印出最佳拟合值,而且还打印出变量的不确定性和相关性,您会发现不确定性很大,并且某些相关性非常接近1。这可能意味着考虑到考虑到不确定性(并且测量始终具有不确定性),结果实际上可能符合您的期望。 这也可能告诉您,您拥有的数据不能很好地支持指数衰减。

您也可以尝试使用该数据的其他模型(想到“线性”;)并比较拟合优度统计数据,例如卡方和Akaike信息准则。

scipy.curve_fit确实返回协方差矩阵-您在示例中未使用的pcov 不幸的是, scipy.curve_fit不会将这些值转换为不确定性和相关性值,并且根本不会尝试返回任何拟合优度统计信息。

为了充分说明对数据的拟合,您不仅需要最佳拟合值,还需要估计可变参数的不确定性。 而且,您需要拟合优度统计信息才能确定拟合是否良好,或者至少确定一个拟合优于另一个拟合。

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM