繁体   English   中英

"R - 测试一对向量是否不相交的有效方法"

[英]R - Efficient way to test whether a pair of vectors is disjoint

我想知道两个向量是否有任何共同的元素。 我不在乎元素是什么,有多少共同元素,或者它们在任一向量中的位置。 我只需要一个简单、高效的函数EIC(vec1, vec2)<\/code>如果vec1<\/code>和vec2<\/code>都存在某些元素,则返回 TRUE,如果两者都没有共同的元素,则返回 FALSE。 我们也可以假设vec1<\/code>和vec2<\/code>包含NA<\/code> ,但其中任何一个都可能有重复的值。

我想了五种方法来做到这一点,但它们似乎都效率低下:

EIC.1 <- function(vec1, vec2) length(intersect(vec1, vec2)) > 0
# I want a function that will stop when it finds the first 
# common element between the vectors, and return TRUE. The
# intersect function will continue on and check whether there are
# any other common elements.

EIC.2 <- function(vec1, vec2) any(vec1 %in% vec2)

EIC.3 <- function(vec1, vec2) any(!is.na(match(vec1, vec2)))
# the match function goes to the trouble of finding the position
# of all matches; I don't need the position but just want to know
# if any exist

EIC.4 <- function(vec1, vec2) {
      uvec1 <- unique(vec1)
      uvec2 <- unique(vec2)
      length(unique(c(uvec1, uvec2))) < length(uvec1) + length(uvec2)
}

EIC.5 <- function(vec1, vec2) !!anyDuplicated(c(unique(vec1), unique(vec2)))
# per https://stackoverflow.com/questions/5263498/how-to-test-whether-a-vector-contains-repetitive-elements#comment5931428_5263593
# I suspect this is the most efficient of the five, because
# anyDuplicated will stop looking when it comes to the first one,
# but I'm not sure about using !! to coerce to boolean type

不是真正的答案,只是一些评论:

我测试了我在问题中列出的五个函数(如@ r2evans建议的那样)。 我使用了五个不同的数据集,因为我认为可能存在性能上的差异,这取决于矢量对是多数不相交还是大多数是不相交的。 (事实证明,与EIC.1到EIC.4没有太大区别;对于EIC.5,如果大多数对是不相交的,它会运行得更慢。)

以下是我生成数据集的方法:

n=1400L

a1 <- replicate(n, sample(5000000L, 500L, replace = TRUE), simplify = FALSE)
b1 <- replicate(n, sample(5000000L, 2500L, replace = TRUE), simplify = FALSE)
# two lists of vectors, to be compared pairwise, where about 22% of the pairs have elements in common

a2 <- replicate(n, sample(800000L, 500L, replace = TRUE), simplify = FALSE)
b2 <- replicate(n, sample(800000L, 2500L, replace = TRUE), simplify = FALSE)
# two lists of vectors, to be compared pairwise, where about 79% of the pairs have elements in common

a3 <- replicate(n, sample(3250000L, 1500L, replace = TRUE), simplify = FALSE)
b3 <- replicate(n, sample(3250000L, 1500L, replace = TRUE), simplify = FALSE)
# two lists of vectors, equal in length, to be compared pairwise, where about 50% of the pairs have elements in common

这是我的结果:

library(microbenchmark)

LL <- c(expression(sapply(1:n, function(k) EIC.1(v1[[k]], v2[[k]]))),
        expression(sapply(1:n, function(k) EIC.2(v1[[k]], v2[[k]]))), 
        expression(sapply(1:n, function(k) EIC.3(v1[[k]], v2[[k]]))),
        expression(sapply(1:n, function(k) EIC.4(v1[[k]], v2[[k]]))),
        expression(sapply(1:n, function(k) EIC.5(v1[[k]], v2[[k]]))) )

v1 <- a1
v2 <- b1
microbenchmark(list=LL)

Unit: milliseconds
                                             expr       min        lq     mean    median       uq      max neval
 sapply(1:n, function(k) EIC.1(v1[[k]], v2[[k]])) 110.59374 110.98621 113.5366 112.52576 114.4162 130.0801   100
 sapply(1:n, function(k) EIC.2(v1[[k]], v2[[k]]))  97.18203  97.64194 101.4938  99.20129 101.6032 158.8913   100
 sapply(1:n, function(k) EIC.3(v1[[k]], v2[[k]]))  96.98262  98.73502 100.5121  99.06029 100.6465 136.2520   100
 sapply(1:n, function(k) EIC.4(v1[[k]], v2[[k]])) 255.85385 256.67103 262.0515 258.23332 265.1787 291.9498   100
 sapply(1:n, function(k) EIC.5(v1[[k]], v2[[k]])) 230.49910 231.25642 236.2385 233.05208 237.7731 280.7453   100

v1 <- a2
v2 <- b2
microbenchmark(list=LL)

Unit: milliseconds
                                             expr       min        lq     mean   median       uq      max neval
 sapply(1:n, function(k) EIC.1(v1[[k]], v2[[k]])) 112.40455 112.78578 114.8205 114.4925 114.9898 126.2302   100
 sapply(1:n, function(k) EIC.2(v1[[k]], v2[[k]]))  98.45717  98.87847 101.7272 100.5070 101.0258 134.8737   100
 sapply(1:n, function(k) EIC.3(v1[[k]], v2[[k]]))  98.15024  98.59084 101.1340 100.2553 101.2907 131.4896   100
 sapply(1:n, function(k) EIC.4(v1[[k]], v2[[k]])) 258.48673 259.18759 264.2449 260.1710 265.2686 307.0624   100
 sapply(1:n, function(k) EIC.5(v1[[k]], v2[[k]])) 200.79988 201.52592 205.8434 203.3817 207.2203 244.2715   100

v1 <- a3
v2 <- b3
microbenchmark(list=LL)

Unit: milliseconds
                                             expr      min       lq     mean   median       uq      max neval
 sapply(1:n, function(k) EIC.1(v1[[k]], v2[[k]])) 134.0820 134.5529 135.4400 134.6922 135.6203 142.1575   100
 sapply(1:n, function(k) EIC.2(v1[[k]], v2[[k]])) 119.7959 120.1119 122.3887 120.2729 122.2338 158.0306   100
 sapply(1:n, function(k) EIC.3(v1[[k]], v2[[k]])) 119.7705 120.2145 122.3458 121.9361 122.4224 150.4227   100
 sapply(1:n, function(k) EIC.4(v1[[k]], v2[[k]])) 257.0928 259.0730 263.2403 259.6671 263.7227 318.9604   100
 sapply(1:n, function(k) EIC.5(v1[[k]], v2[[k]])) 226.4821 227.0798 230.2878 228.4882 231.3292 258.4599   100

v1 <- b1  # the longer vector is now vec1
v2 <- a1  
microbenchmark(list=LL)

Unit: milliseconds
                                             expr      min       lq     mean   median       uq      max neval
 sapply(1:n, function(k) EIC.1(v1[[k]], v2[[k]])) 199.2799 201.3817 202.5054 201.6378 202.7534 214.8660   100
 sapply(1:n, function(k) EIC.2(v1[[k]], v2[[k]])) 187.5226 187.9299 188.9177 188.1184 189.8541 196.1020   100
 sapply(1:n, function(k) EIC.3(v1[[k]], v2[[k]])) 187.8891 188.3417 190.5641 190.1809 190.8307 219.4735   100
 sapply(1:n, function(k) EIC.4(v1[[k]], v2[[k]])) 255.1007 255.8905 260.1282 256.8316 262.1560 288.4900   100
 sapply(1:n, function(k) EIC.5(v1[[k]], v2[[k]])) 237.7409 238.4515 241.5251 239.9415 243.5631 266.5916   100

v1 <- b2
v2 <- a2
microbenchmark(list=LL)

Unit: milliseconds
                                             expr      min       lq     mean   median       uq      max neval
 sapply(1:n, function(k) EIC.1(v1[[k]], v2[[k]])) 198.8747 201.2476 202.1573 201.5215 202.3886 207.7772   100
 sapply(1:n, function(k) EIC.2(v1[[k]], v2[[k]])) 185.5260 185.7983 187.8099 185.9842 188.3947 225.7553   100
 sapply(1:n, function(k) EIC.3(v1[[k]], v2[[k]])) 185.8022 186.1824 188.8937 187.9226 188.6763 221.2442   100
 sapply(1:n, function(k) EIC.4(v1[[k]], v2[[k]])) 257.6607 258.5063 262.3677 259.6778 264.6313 304.4813   100
 sapply(1:n, function(k) EIC.5(v1[[k]], v2[[k]])) 230.5553 231.3261 233.9914 232.9138 235.0349 260.4950   100

在所有情况下,EIC.2和EIC.3都是最快的(并且非常接近),EIC.1也不甘落后。 但请注意,如果较短的向量是第一个,它们都会更有效。 例如,在vec1a1 (长度500)并且vec2b1 (长度2500)的情况下,EIC.2的中值为99毫秒。 但是当我切换它们使得vec1b1vec2a1 ,EIC.2减慢到188毫秒。 因此,为了提高效率,在调用EIC.2之前,值得检查哪个向量更长。 (或者重写EIC.2,以便它总是%in% [较长向量]中测试[较短的向量] %in% 。)

我们可以试试table<\/code> + any<\/code>

EIC.6 <- function(x, y) any(table(c(unique(x), unique(y))) > 1)

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM