繁体   English   中英

我应该如何解释 R 中函数 multinom 的结果?

[英]How should I interpret the results of function multinom in R?

我有一个包含五个分类变量的数据集。 我使用包 nnet 中的函数 multinom 运行多项逻辑回归,然后从系数中导出p值。 但我不知道如何解释结果。

p值是根据加州大学洛杉矶分校的教程得出的: https : //stats.idre.ucla.edu/r/dae/multinomial-logistic-regression/

像这样:

z <- summary(test)$coefficients/summary(test)$standard.errors
p <- (1 - pnorm(abs(z), 0, 1)) * 2
p

我得到了这个:

                        (Intercept)       Age1 Age2         Age3         Age4 Unit1      Unit2 Unit3 Unit4     Unit5    Level1    Level2     Area1     Area2
Not severe              0.7388029 9.094373e-01    0 0.000000e+00 0.000000e+00     0 0.75159758     0     0 0.0000000 0.8977727 0.9333862 0.6285447 0.4457171
Very severe             0.0000000 1.218272e-09    0 6.599380e-06 7.811761e-04     0 0.00000000     0     0 0.0000000 0.7658748 0.6209889 0.0000000 0.0000000
Severe                  0.0000000 8.744405e-08    0 1.052835e-06 3.299770e-04     0 0.00000000     0     0 0.0000000 0.8843606 0.4862364 0.0000000 0.0000000
Just so so              0.0000000 1.685045e-07    0 5.507560e-03 2.973261e-06     0 0.08427447     0   NaN 0.3010429 0.5552963 0.7291180 0.0000000 0.0000000
Not severe at all       0.0000000 0.000000e+00    0 0.000000e+00 0.000000e+00     0        NaN   NaN     0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

但是我应该如何解释这些 p 值? 年龄3 与非常严重有关吗? 我对统计很陌生,不知道。 请帮助我理解结果。 先感谢您。

我建议使用stargazer包来显示系数和p值(我相信这是一种更方便和通用的方式)

关于结果的解释,在多项式模型中,您可以说:保持所有其他变量不变,如果Age3高一个单位,则非常严重相对于参考类别的对数几率更高/更低,由系数的值。 p 值仅显示这两个变量(预测变量和响应)之间的关联是否显着。 解释与其他模型相同。

注意:在 p 值的情况下,零假设始终是系数等于零(根本没有影响)。 当 p 值小于 0.05 时,您可以安全地拒绝原假设并声明预测变量对响应变量有影响。

我希望我能给你一些提示

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM