簡體   English   中英

神經網絡反向傳播算法不適用於Python

[英]Neural network backpropagation algorithm not working in Python

我正在用Python寫一個神經網絡,按照這里的例子。 考慮到神經網絡經過一萬次訓練后無法產生正確的值(在誤差范圍內),似乎反向傳播算法不起作用。 具體來說,我正在訓練它來計算以下示例中的正弦函數:

import numpy as np

class Neuralnet:
    def __init__(self, neurons):
        self.weights = []
        self.inputs = []
        self.outputs = []
        self.errors = []
        self.rate = .1
        for layer in range(len(neurons)):
            self.inputs.append(np.empty(neurons[layer]))
            self.outputs.append(np.empty(neurons[layer]))
            self.errors.append(np.empty(neurons[layer]))
        for layer in range(len(neurons)-1):
            self.weights.append(
                np.random.normal(
                    scale=1/np.sqrt(neurons[layer]), 
                    size=[neurons[layer], neurons[layer + 1]]
                    )
                )

    def feedforward(self, inputs):
        self.inputs[0] = inputs
        for layer in range(len(self.weights)):
            self.outputs[layer] = np.tanh(self.inputs[layer])
            self.inputs[layer + 1] = np.dot(self.weights[layer].T, self.outputs[layer])
        self.outputs[-1] = np.tanh(self.inputs[-1])

    def backpropagate(self, targets):
        gradient = 1 - self.outputs[-1] * self.outputs[-1]
        self.errors[-1] = gradient * (self.outputs[-1] - targets)
        for layer in reversed(range(len(self.errors) - 1)):
            gradient = 1 - self.outputs[layer] * self.outputs[layer]
            self.errors[layer] = gradient * np.dot(self.weights[layer], self.errors[layer + 1])
        for layer in range(len(self.weights)):
            self.weights[layer] -= self.rate * np.outer(self.outputs[layer], self.errors[layer + 1])

def xor_example():
    net = Neuralnet([2, 2, 1])
    for step in range(100000):
        net.feedforward([0, 0])
        net.backpropagate([-1])
        net.feedforward([0, 1])
        net.backpropagate([1])
        net.feedforward([1, 0])
        net.backpropagate([1])
        net.feedforward([1, 1])
        net.backpropagate([-1])
    net.feedforward([1, 1])
    print(net.outputs[-1])

def identity_example():
    net = Neuralnet([1, 3, 1])
    for step in range(100000):
        x = np.random.normal()
        net.feedforward([x])
        net.backpropagate([np.tanh(x)])
    net.feedforward([-2])
    print(net.outputs[-1])

def sine_example():
    net = Neuralnet([1, 6, 1])
    for step in range(100000):
        x = np.random.normal()
        net.feedforward([x])
        net.backpropagate([np.tanh(np.sin(x))])
    net.feedforward([3])
    print(net.outputs[-1])

sine_example()

輸出無法接近tanh(sin(3)) = 0.140190616 我懷疑涉及錯誤索引或對齊的錯誤,但Numpy沒有引發任何這樣的錯誤。 我出錯的地方有什么提示嗎?

編輯:我忘了添加偏置神經元。 這是更新的代碼:

import numpy as np

class Neuralnet:
    def __init__(self, neurons):
        self.weights = []
        self.outputs = []
        self.inputs = []
        self.errors = []
        self.offsets = []
        self.rate = .01
        for layer in range(len(neurons)-1):
            self.weights.append(
                np.random.normal(
                    scale=1/np.sqrt(neurons[layer]), 
                    size=[neurons[layer], neurons[layer + 1]]
                    )
                )
            self.outputs.append(np.empty(neurons[layer]))
            self.inputs.append(np.empty(neurons[layer]))
            self.errors.append(np.empty(neurons[layer]))
            self.offsets.append(np.random.normal(scale=1/np.sqrt(neurons[layer]), size=neurons[layer + 1]))
        self.inputs.append(np.empty(neurons[-1]))
        self.errors.append(np.empty(neurons[-1]))

    def feedforward(self, inputs):
        self.inputs[0] = inputs
        for layer in range(len(self.weights)):
            self.outputs[layer] = np.tanh(self.inputs[layer])
            self.inputs[layer + 1] = self.offsets[layer] + np.dot(self.weights[layer].T, self.outputs[layer])

    def backpropagate(self, targets):
        self.errors[-1] = self.inputs[-1] - targets
        for layer in reversed(range(len(self.errors) - 1)):
            gradient = 1 - self.outputs[layer] * self.outputs[layer]
            self.errors[layer] = gradient * np.dot(self.weights[layer], self.errors[layer + 1])
        for layer in range(len(self.weights)):
            self.weights[layer] -= self.rate * np.outer(self.outputs[layer], self.errors[layer + 1])
            self.offsets[layer] -= self.rate * self.errors[layer + 1]

def sine_example():
    net = Neuralnet([1, 5, 1])
    for step in range(10000):
        x = np.random.uniform(-5, 5)
        net.feedforward([x])
        net.backpropagate([np.sin(x)])
    net.feedforward([np.pi])
    print(net.inputs[-1])

def xor_example():
    net = Neuralnet([2, 2, 1])
    for step in range(10000):
        net.feedforward([0, 0])
        net.backpropagate([-1])
        net.feedforward([0, 1])
        net.backpropagate([1])
        net.feedforward([1, 0])
        net.backpropagate([1])
        net.feedforward([1, 1])
        net.backpropagate([-1])
    net.feedforward([1, 1])
    print(net.outputs[-1])

def identity_example():
    net = Neuralnet([1, 3, 1])
    for step in range(10000):
        x = np.random.normal()
        net.feedforward([x])
        net.backpropagate([x])
    net.feedforward([-2])
    print(net.outputs[-1])

identity_example()

我認為你以錯誤的方式訓練NN。 您有一個超過10000次迭代的循環,並在每個循環中提供一個新樣本。 在這種情況下,NN永遠不會接受培訓。

(聲明錯了!看到更新!)

您需要做的是生成大量真實樣本Y = sin(X) ,將其提供給您的網絡ONCE並向前和向后迭代訓練集,以便最小化成本函數。 要檢查算法,您可能需要根據迭代次數繪制成本函數,並確保成本下降。

另一個重點是權重的初始化。 您的數字非常大,網絡將花費大量時間來收斂,尤其是在使用低費率時。 在一些小范圍[-eps .. eps]統一生成初始權重是一種很好的做法。

在我的代碼中,我實現了兩個不同的激活函數: sigmoid()tanh() 您需要根據所選功能縮放輸入: [0 .. 1][-1 .. 1]

下面是一些圖像,顯示了成本函數以及sigmoid()tanh()激活函數的結果預測:

乙狀結腸激活

tanh激活

正如您所看到的, sigmoid()激活比tanh()提供了更好的結果。

與使用4層[1, 6, 4, 1] 1,6,4,1 [1, 6, 1]的更大網絡相比,我在使用網絡[1, 6, 1] 1,6,1]時得到了更好的預測。 因此,NN的大小並不總是關鍵因素。 以下是對4層提到的網絡的預測:

sigmoid用於更大的網絡

這是我的代碼和一些評論。 我試圖在可能的地方使用你的符號。

import numpy as np
import math
import matplotlib.pyplot as plt

class Neuralnet:
    def __init__(self, neurons, activation):
        self.weights = []
        self.inputs = []
        self.outputs = []
        self.errors = []
        self.rate = 0.5
        self.activation = activation    #sigmoid or tanh

        self.neurons = neurons
        self.L = len(self.neurons)      #number of layers

        eps = 0.12;    # range for uniform distribution   -eps..+eps              
        for layer in range(len(neurons)-1):
            self.weights.append(np.random.uniform(-eps,eps,size=(neurons[layer+1], neurons[layer]+1)))            


    ###################################################################################################    
    def train(self, X, Y, iter_count):

        m = X.shape[0];

        for layer in range(self.L):
            self.inputs.append(np.empty([m, self.neurons[layer]]))        
            self.errors.append(np.empty([m, self.neurons[layer]]))

            if (layer < self.L -1):
                self.outputs.append(np.empty([m, self.neurons[layer]+1]))
            else:
                self.outputs.append(np.empty([m, self.neurons[layer]]))

        #accumulate the cost function
        J_history = np.zeros([iter_count, 1])


        for i in range(iter_count):

            self.feedforward(X)

            J = self.cost(Y, self.outputs[self.L-1])
            J_history[i, 0] = J

            self.backpropagate(Y)


        #plot the cost function to check the descent
        plt.plot(J_history)
        plt.show()


    ###################################################################################################    
    def cost(self, Y, H):     
        J = np.sum(np.sum(np.power((Y - H), 2), axis=0))/(2*m)
        return J

    ###################################################################################################
    def feedforward(self, X):

        m = X.shape[0];

        self.outputs[0] = np.concatenate(  (np.ones([m, 1]),   X),   axis=1)

        for i in range(1, self.L):
            self.inputs[i] = np.dot( self.outputs[i-1], self.weights[i-1].T  )

            if (self.activation == 'sigmoid'):
                output_temp = self.sigmoid(self.inputs[i])
            elif (self.activation == 'tanh'):
                output_temp = np.tanh(self.inputs[i])


            if (i < self.L - 1):
                self.outputs[i] = np.concatenate(  (np.ones([m, 1]),   output_temp),   axis=1)
            else:
                self.outputs[i] = output_temp

    ###################################################################################################
    def backpropagate(self, Y):

        self.errors[self.L-1] = self.outputs[self.L-1] - Y

        for i in range(self.L - 2, 0, -1):

            if (self.activation == 'sigmoid'):
                self.errors[i] = np.dot(  self.errors[i+1],   self.weights[i][:, 1:]  ) *  self.sigmoid_prime(self.inputs[i])
            elif (self.activation == 'tanh'):
                self.errors[i] = np.dot(  self.errors[i+1],   self.weights[i][:, 1:]  ) *  (1 - self.outputs[i][:, 1:]*self.outputs[i][:, 1:])

        for i in range(0, self.L-1):
            grad = np.dot(self.errors[i+1].T, self.outputs[i]) / m
            self.weights[i] = self.weights[i] - self.rate*grad

    ###################################################################################################
    def sigmoid(self, z):
        s = 1.0/(1.0 + np.exp(-z))
        return s

    ###################################################################################################
    def sigmoid_prime(self, z):
        s = self.sigmoid(z)*(1 - self.sigmoid(z))
        return s    

    ###################################################################################################
    def predict(self, X, weights):

        m = X.shape[0];

        self.inputs = []
        self.outputs = []
        self.weights = weights

        for layer in range(self.L):
            self.inputs.append(np.empty([m, self.neurons[layer]]))        

            if (layer < self.L -1):
                self.outputs.append(np.empty([m, self.neurons[layer]+1]))
            else:
                self.outputs.append(np.empty([m, self.neurons[layer]]))

        self.feedforward(X)

        return self.outputs[self.L-1]


###################################################################################################
#                MAIN PART

activation1 = 'sigmoid'     # the input should be scaled into [ 0..1]
activation2 = 'tanh'        # the input should be scaled into [-1..1]

activation = activation1

net = Neuralnet([1, 6, 1], activation) # structure of the NN and its activation function


##########################################################################################
#                TRAINING

m = 1000 #size of the training set
X = np.linspace(0, 4*math.pi, num = m).reshape(m, 1); # input training set


Y = np.sin(X) # target

kx = 0.1 # noise parameter
noise = (2.0*np.random.uniform(0, kx, m) - kx).reshape(m, 1)
Y = Y + noise # noisy target

# scaling of the target depending on the activation function
if (activation == 'sigmoid'):
    Y_scaled = (Y/(1+kx) + 1)/2.0
elif (activation == 'tanh'):
    Y_scaled = Y/(1+kx)


# number of the iteration for the training stage
iter_count = 20000
net.train(X, Y_scaled, iter_count) #training

# gained weights
trained_weights = net.weights

##########################################################################################
#                 PREDICTION

m_new = 40 #size of the prediction set
X_new = np.linspace(0, 4*math.pi, num = m_new).reshape(m_new, 1);

Y_new = net.predict(X_new, trained_weights) # prediction

#rescaling of the result 
if (activation == 'sigmoid'):
    Y_new = (2.0*Y_new - 1.0) * (1+kx)
elif (activation == 'tanh'):
    Y_new = Y_new * (1+kx)

# visualization
plt.plot(X, Y)
plt.plot(X_new, Y_new, 'ro')
plt.show()

raw_input('press any key to exit')

UPDATE

我想收回有關您的代碼中使用的培訓方法的聲明。 實際上,每次迭代僅使用一個樣本來訓練網絡。 我使用sigmoid和tanh激活函數在在線培訓中獲得了有趣的結果:

使用Sigmoid進行在線培訓 (成本函數和預測)

乙狀結腸

使用Tanh進行在線培訓 (成本函數和預測)

正切

可以看出,選擇Sigmoid作為激活函數可以提供更好的性能。 成本函數在離線培訓期間看起來不那么好,但至少它往往會下降。

我在你的實現中繪制了成本函數,它看起來也很不穩定:

在此輸入圖像描述

使用sigmoid甚至ReLU函數嘗試代碼可能是個好主意。

這是更新的源代碼。 要在onlineoffline訓練模式之間切換,只需更改method變量即可。

import numpy as np
import math
import matplotlib.pyplot as plt

class Neuralnet:
    def __init__(self, neurons, activation):
        self.weights = []
        self.inputs = []
        self.outputs = []
        self.errors = []
        self.rate = 0.2
        self.activation = activation    #sigmoid or tanh

        self.neurons = neurons
        self.L = len(self.neurons)      #number of layers

        eps = 0.12;    #range for uniform distribution   -eps..+eps              
        for layer in range(len(neurons)-1):
            self.weights.append(np.random.uniform(-eps,eps,size=(neurons[layer+1], neurons[layer]+1)))            


    ###################################################################################################    
    def train(self, X, Y, iter_count):

        m = X.shape[0];

        for layer in range(self.L):
            self.inputs.append(np.empty([m, self.neurons[layer]]))        
            self.errors.append(np.empty([m, self.neurons[layer]]))

            if (layer < self.L -1):
                self.outputs.append(np.empty([m, self.neurons[layer]+1]))
            else:
                self.outputs.append(np.empty([m, self.neurons[layer]]))

        #accumulate the cost function
        J_history = np.zeros([iter_count, 1])


        for i in range(iter_count):

            self.feedforward(X)

            J = self.cost(Y, self.outputs[self.L-1])
            J_history[i, 0] = J

            self.backpropagate(Y)


        #plot the cost function to check the descent
        #plt.plot(J_history)
        #plt.show()


    ###################################################################################################    
    def cost(self, Y, H):     
        J = np.sum(np.sum(np.power((Y - H), 2), axis=0))/(2*m)
        return J


    ###################################################################################################
    def cost_online(self, min_x, max_x, iter_number):
        h_arr = np.zeros([iter_number, 1])
        y_arr = np.zeros([iter_number, 1])

        for step in range(iter_number):
            x = np.random.uniform(min_x, max_x, 1).reshape(1, 1)

            self.feedforward(x)
            h_arr[step, 0] = self.outputs[-1]
            y_arr[step, 0] = np.sin(x)



        J = np.sum(np.sum(np.power((y_arr - h_arr), 2), axis=0))/(2*iter_number)
        return J

    ###################################################################################################
    def feedforward(self, X):

        m = X.shape[0];

        self.outputs[0] = np.concatenate(  (np.ones([m, 1]),   X),   axis=1)

        for i in range(1, self.L):
            self.inputs[i] = np.dot( self.outputs[i-1], self.weights[i-1].T  )

            if (self.activation == 'sigmoid'):
                output_temp = self.sigmoid(self.inputs[i])
            elif (self.activation == 'tanh'):
                output_temp = np.tanh(self.inputs[i])


            if (i < self.L - 1):
                self.outputs[i] = np.concatenate(  (np.ones([m, 1]),   output_temp),   axis=1)
            else:
                self.outputs[i] = output_temp

    ###################################################################################################
    def backpropagate(self, Y):

        self.errors[self.L-1] = self.outputs[self.L-1] - Y

        for i in range(self.L - 2, 0, -1):

            if (self.activation == 'sigmoid'):
                self.errors[i] = np.dot(  self.errors[i+1],   self.weights[i][:, 1:]  ) *  self.sigmoid_prime(self.inputs[i])
            elif (self.activation == 'tanh'):
                self.errors[i] = np.dot(  self.errors[i+1],   self.weights[i][:, 1:]  ) *  (1 - self.outputs[i][:, 1:]*self.outputs[i][:, 1:])

        for i in range(0, self.L-1):
            grad = np.dot(self.errors[i+1].T, self.outputs[i]) / m
            self.weights[i] = self.weights[i] - self.rate*grad


    ###################################################################################################
    def sigmoid(self, z):
        s = 1.0/(1.0 + np.exp(-z))
        return s

    ###################################################################################################
    def sigmoid_prime(self, z):
        s = self.sigmoid(z)*(1 - self.sigmoid(z))
        return s    

    ###################################################################################################
    def predict(self, X, weights):

        m = X.shape[0];

        self.inputs = []
        self.outputs = []
        self.weights = weights

        for layer in range(self.L):
            self.inputs.append(np.empty([m, self.neurons[layer]]))        

            if (layer < self.L -1):
                self.outputs.append(np.empty([m, self.neurons[layer]+1]))
            else:
                self.outputs.append(np.empty([m, self.neurons[layer]]))

        self.feedforward(X)

        return self.outputs[self.L-1]


###################################################################################################
#                MAIN PART

activation1 = 'sigmoid'     #the input should be scaled into [0..1]
activation2 = 'tanh'        #the input should be scaled into [-1..1]

activation = activation1

net = Neuralnet([1, 6, 1], activation) # structure of the NN and its activation function


method1 = 'online'
method2 = 'offline'

method = method1

kx = 0.1 #noise parameter

###################################################################################################
#                TRAINING

if (method == 'offline'):

    m = 1000 #size of the training set
    X = np.linspace(0, 4*math.pi, num = m).reshape(m, 1); #input training set


    Y = np.sin(X) #target


    noise = (2.0*np.random.uniform(0, kx, m) - kx).reshape(m, 1)
    Y = Y + noise #noisy target

    #scaling of the target depending on the activation function
    if (activation == 'sigmoid'):
        Y_scaled = (Y/(1+kx) + 1)/2.0
    elif (activation == 'tanh'):
        Y_scaled = Y/(1+kx)


    #number of the iteration for the training stage
    iter_count = 20000
    net.train(X, Y_scaled, iter_count) #training

elif (method == 'online'):

    sampling_count = 100000 # number of samplings during the training stage


    m = 1 #batch size

    iter_count = sampling_count/m

    for layer in range(net.L):
        net.inputs.append(np.empty([m, net.neurons[layer]]))        
        net.errors.append(np.empty([m, net.neurons[layer]]))

        if (layer < net.L -1):
            net.outputs.append(np.empty([m, net.neurons[layer]+1]))
        else:
            net.outputs.append(np.empty([m, net.neurons[layer]]))    

    J_history = []
    step_history = []

    for i in range(iter_count):
        X = np.random.uniform(0, 4*math.pi, m).reshape(m, 1)

        Y = np.sin(X) #target
        noise = (2.0*np.random.uniform(0, kx, m) - kx).reshape(m, 1)
        Y = Y + noise #noisy target

        #scaling of the target depending on the activation function
        if (activation == 'sigmoid'):
            Y_scaled = (Y/(1+kx) + 1)/2.0
        elif (activation == 'tanh'):
            Y_scaled = Y/(1+kx)

        net.feedforward(X)
        net.backpropagate(Y_scaled)


        if (np.remainder(i, 1000) == 0):
            J = net.cost_online(0, 4*math.pi, 1000)
            J_history.append(J)
            step_history.append(i)

    plt.plot(step_history, J_history)
    plt.title('Batch size ' + str(m) + ', rate ' + str(net.rate) + ', samples ' + str(sampling_count))
    #plt.ylim([0, 0.1])

    plt.show()

#gained weights
trained_weights = net.weights

##########################################################################################
#                 PREDICTION

m_new = 40 #size of the prediction set
X_new = np.linspace(0, 4*math.pi, num = m_new).reshape(m_new, 1);

Y_new = net.predict(X_new, trained_weights) #prediction

#rescaling of the result 
if (activation == 'sigmoid'):
    Y_new = (2.0*Y_new - 1.0) * (1+kx)
elif (activation == 'tanh'):
    Y_new = Y_new * (1+kx)

#visualization

#fake sine curve to show the ideal signal
if (method == 'online'):
    X = np.linspace(0, 4*math.pi, num = 100)
    Y = np.sin(X)

plt.plot(X, Y)

plt.plot(X_new, Y_new, 'ro')
if (method == 'online'):
    plt.title('Batch size ' + str(m) + ', rate ' + str(net.rate) + ', samples ' + str(sampling_count))
plt.ylim([-1.5, 1.5])
plt.show()

raw_input('press any key to exit')

現在我對你當前的代碼有一些評論:

你的正弦函數看起來像這樣:

def sine_example():
    net = Neuralnet([1, 6, 1])
    for step in range(100000):
        x = np.random.normal()
        net.feedforward([x])
        net.backpropagate([np.tanh(np.sin(x))])
    net.feedforward([3])
    print(net.outputs[-1])

我不知道為什么你在目標輸入中使用tanh。 如果你真的想使用正弦的tanh作為目標,你需要將它縮放到[-1..1] ,因為tanh(sin(x))返回范圍[-0.76..0.76]值。

接下來是訓練集的范圍。 使用x = np.random.normal()生成樣本。 以下是此類輸入的分布:

在此輸入圖像描述

之后,您希望您的網絡預測3的正弦值,但網絡在訓練階段幾乎從未見過這個數字。 我會在更廣泛的范圍內使用均勻分布來代替樣本生成。

暫無
暫無

聲明:本站的技術帖子網頁,遵循CC BY-SA 4.0協議,如果您需要轉載,請注明本站網址或者原文地址。任何問題請咨詢:yoyou2525@163.com.

 
粵ICP備18138465號  © 2020-2024 STACKOOM.COM