簡體   English   中英

加快Python中的集成功能

[英]Speed up an integration function in Python

我有一個函數,它是一些大問題的內在循環。 因此,這將被稱為數百萬次。 我已經嘗試對其進行優化。 但是,由於這是我的第一個數字項目,所以我想知道是否還有其他方法可以提高速度。

cython似乎無濟於事。 也許numpy已經接近c了。 否則我無法有效編寫cython代碼。

import numpy as np
import math
import numexpr as ne


par_mu_rho = 0.8
par_alpha_rho = 0.7
# ' the first two are mean of mus and the '
# ' last two are the mean of alphas.'
cov_epsilon = [[1, par_mu_rho], [par_mu_rho, 1]]
cov_nu = [[1, par_alpha_rho], [par_alpha_rho, 1]]
nrows = 10000 
np.random.seed(123)
epsilon_sim = np.random.multivariate_normal([0, 0], cov_epsilon, nrows)
nu_sim = np.random.multivariate_normal([0, 0], cov_nu, nrows)
errors = np.concatenate((epsilon_sim, nu_sim), axis=1)
errors = np.exp(errors)


### the function to be optimized

def mktout(mean_mu_alpha, errors, par_gamma):
    mu10 = errors[:, 0] * math.exp(mean_mu_alpha[0])
    mu11 = math.exp(par_gamma) * mu10  # mu with gamma
    mu20 = errors[:, 1] * math.exp(mean_mu_alpha[1])
    mu21 = math.exp(par_gamma) * mu20
    alpha1 = errors[:, 2] * math.exp(mean_mu_alpha[2])
    alpha2 = errors[:, 3] * math.exp(mean_mu_alpha[3])

    j_is_larger = (mu10 > mu20)
    #     useneither1 = (mu10 < 1/168)
    threshold2 = (1 + mu10 * alpha1) / (168 + alpha1)
    #     useboth1 = (mu21 >= threshold2)
    j_is_smaller = ~j_is_larger
    #     useneither2 = (mu20 < 1/168)
    threshold3 = (1 + mu20 * alpha2) / (168 + alpha2)
    #     useboth2 = (mu11 >= threshold3)
    case1 = j_is_larger * (mu10 < 1 / 168)
    case2 = j_is_larger * (mu21 >= threshold2)
    #     case3 = j_is_larger * (1 - (useneither1 | useboth1))
    case3 = j_is_larger ^ (case1 | case2)
    case4 = j_is_smaller * (mu20 < 1 / 168)
    case5 = j_is_smaller * (mu11 >= threshold3)
    #     case6 = j_is_smaller * (1 - (useneither2 | useboth2))
    case6 = j_is_smaller ^ (case4 | case5)
    t0 = ne.evaluate(
        "case1*168+case2 * (168 + alpha1 + alpha2) / (1 + mu11 * alpha1 + mu21 * alpha2) +case3 / threshold2 +case4 * 168 +case5 * (168 + alpha1 + alpha2) / (1 + mu11 * alpha1 + mu21 * alpha2) + case6 / threshold3")
    # for some cases, t1 would be 0 anyway, so they are omitted here.
    t1 = ne.evaluate(
        "case2 * (t0 * alpha1 * mu11 - alpha1) +case3 * (t0 * alpha1 * mu10 - alpha1) +case5 * (t0 * alpha1 * mu11 - alpha1)")
    # t2 = (j_is_larger*useboth1*(t0*alpha2*mu21- alpha2) +
    #       j_is_smaller*useboth2*(t0*alpha2*mu21- alpha2) +
    #       j_is_smaller*(1- (useneither2|useboth2))*(t0*alpha2*mu20 - alpha2)
    #       )
    t2 = 168 - t0 - t1
    p12 = case2 + case5
    p1 = case3 + p12
    p2 = case6 + p12
    return t1.sum()/10000, t2.sum()/10000, p1.sum()/10000, p2.sum()/10000

timeit mktout([-6,-6,-1,-1], errors, -0.7)

在裝有2.2GHz i7的舊Mac上。 該功能的運行時間約為200µs。

更新:

根據@CodeSurgeon和@ GZ0的建議和代碼,我決定使用以下代碼

def mktout_full(double[:] mean_mu_alpha, double[:, ::1] errors, double par_gamma):
    cdef:
        size_t i, n
        double[4] exp
        double exp_par_gamma
        double mu10, mu11, mu20, mu21
        double alpha1, alpha2
        double threshold2, threshold3
        double t0, t1, t2
        double t1_sum, t2_sum, p1_sum, p2_sum, p12_sum
        double c

    #compute the exp outside of the loop
    n = errors.shape[0]
    exp[0] = cmath.exp(<double>mean_mu_alpha[0])
    exp[1] = cmath.exp(<double>mean_mu_alpha[1])
    exp[2] = cmath.exp(<double>mean_mu_alpha[2])
    exp[3] = cmath.exp(<double>mean_mu_alpha[3])
    exp_par_gamma = cmath.exp(par_gamma)
    c = 168.0

    t1_sum = 0.0
    t2_sum = 0.0
    p1_sum = 0.0
    p2_sum = 0.0
    p12_sum = 0.0

    for i in range(n) :
        mu10 = errors[i, 0] * exp[0]
    #         mu11 = exp_par_gamma * mu10
        mu20 = errors[i, 1] * exp[1]
    #         mu21 = exp_par_gamma * mu20
    #         alpha1 = errors[i, 2] * exp[2]
    #         alpha2 = errors[i, 3] * exp[3]
    #         j_is_larger = mu10 > mu20
    #         j_is_smaller = not j_is_larger

        if (mu10 >= mu20):
            if (mu10 >= 1/c) :
                mu21 = exp_par_gamma * mu20
                alpha1 = errors[i, 2] * exp[2]
                alpha2 = errors[i, 3] * exp[3]
                threshold2 = (1 + mu10 * alpha1) / (c + alpha1)
                if (mu21 >= threshold2):
                    mu11 = exp_par_gamma * mu10
                    t0 =  (c + alpha1 + alpha2) / (1 + mu11 * alpha1 + mu21 * alpha2)
                    t1 = (t0 * alpha1 * mu11 - alpha1)
                    t1_sum += t1
                    t2_sum += c - t0 - t1
                    p1_sum += 1
                    p2_sum += 1
                    p12_sum += 1
                else :
                    t1_sum += ((1/threshold2) * alpha1 * mu10 - alpha1)
                    p1_sum += 1
        else :
            if (mu20 >= 1/c) :
                mu11 = exp_par_gamma * mu10
                alpha1 = errors[i, 2] * exp[2]
                alpha2 = errors[i, 3] * exp[3]
                threshold3 = (1 + mu20 * alpha2) / (c + alpha2)
                if (mu11 >= threshold3):
                    mu21 = exp_par_gamma * mu20
                    t0 =  (c + alpha1 + alpha2) / (1 + mu11 * alpha1 + mu21 * alpha2)
                    t1 = (t0 * alpha1 * mu11 - alpha1)
                    t1_sum += t1
                    t2_sum += c - t0 - t1
                    p1_sum += 1
                    p2_sum += 1
                    p12_sum += 1
                else :
                    t2_sum += ((1/threshold3) * alpha2 * mu20 - alpha2)
                    p2_sum += 1

    return t1_sum/n, t2_sum/n, p1_sum/n, p2_sum/n, p12_sum/n

我的原始代碼運行時間為650µs。 mktoutmktout_if運行時間約為220µs和120µs。 上面的mktout_full運行大約68 µs。 我在做mktout_full是優化中的if-else邏輯mktout_if 或許令人驚訝的,並行out_loop通過codesurgeon結合的if-else在邏輯mktout_full是較慢的方式(121ms)。

簡要地看一下代碼並嘗試對其進行cythonize處理,僅將ndarray類型添加到所有參數和變量中並不會顯着改變性能。 如果在這個緊迫的內部循環中為該功能節省微秒,我將考慮進行以下修改:

  1. 難以對這些代碼進行cythonize的原因是您的代碼是矢量化的。 所有操作都通過numpynumexpr 雖然這些操作本身都是有效的,但它們都會增加一些python開銷 (如果您查看cython可以生成的帶注釋的.html文件,則可以看到)。
  2. 如果您多次調用此函數(根據您的注釋顯示),則可以通過使mktout成為cdef函數來節省一些時間。 Python函數調用的開銷很大。
  3. 輕微,但您可以嘗試避免使用python math模塊中的任何函數。 您可以from libc cimport math as cmath替換from libc cimport math as cmath而改用cmath.exp
  4. 我看到您的mktout函數接收一個python列表mean_mu_alpha 您可以考慮使用cdef class對象替換此參數,然后鍵入此參數。 如果您選擇使mktout成為cdef函數,則它可以只是一個struct或double *數組。 無論哪種方式,索引到python列表(可以包含需要取消裝箱成對應的c型的任意python對象)的索引都將很慢。
  5. 這可能是最重要的部分。 對於每個對mktout調用,您正在為許多數組分配內存(對於每個mualphathresholdcaset-p-數組)。 然后,您可以在函數末尾(通過python的gc)釋放所有這些內存,只是可能在下一次調用時再次使用所有這些空間。 如果可以更改mktout的簽名, mktout可以將所有這些數組作為參數傳遞,以便可以在函數調用之間重用和覆蓋內存 對此情況更好的另一種選擇是遍歷數組並一次執行一個元素的所有計算。
  6. 您可以使用cython的prange函數對代碼進行多線程prange 在完成所有上述更改之后,我會解決這個問題,並且我會在mktout函數本身之外進行多線程處理。 也就是說,您將對mktout進行多線程調用,而不是對mktout本身進行多線程mktout

進行上述更改將需要大量工作,並且您可能必須自己重新實現numpy和numexpr提供的許多功能,以避免與每次相關的python開銷。 如果有任何不清楚的地方,請告訴我。


更新#1:實施#1,#3和#5點后,我得到了11倍的提速 這是這段代碼的樣子。 我相信,如果您放棄def函數, list mean_mu_alpha輸入和tuple輸出,它的運行速度將會更快。 注意:與原始代碼相比,我在最后一位小數位得到的結果略有不同,這可能是由於某些我不理解的浮點規則所致。

from libc cimport math as cmath
from libc.stdint cimport *
from libc.stdlib cimport *

def mktout(list mean_mu_alpha, double[:, ::1] errors, double par_gamma):
    cdef:
        size_t i, n
        double[4] exp
        double exp_par_gamma
        double mu10, mu11, mu20, mu21
        double alpha1, alpha2
        bint j_is_larger, j_is_smaller
        double threshold2, threshold3
        bint case1, case2, case3, case4, case5, case6
        double t0, t1, t2
        double p12, p1, p2
        double t1_sum, t2_sum, p1_sum, p2_sum
        double c

    #compute the exp outside of the loop
    n = errors.shape[0]
    exp[0] = cmath.exp(<double>mean_mu_alpha[0])
    exp[1] = cmath.exp(<double>mean_mu_alpha[1])
    exp[2] = cmath.exp(<double>mean_mu_alpha[2])
    exp[3] = cmath.exp(<double>mean_mu_alpha[3])
    exp_par_gamma = cmath.exp(par_gamma)
    c = 168.0

    t1_sum = 0.0
    t2_sum = 0.0
    p1_sum = 0.0
    p2_sum = 0.0

    for i in range(n):
        mu10 = errors[i, 0] * exp[0]
        mu11 = exp_par_gamma * mu10
        mu20 = errors[i, 1] * exp[1]
        mu21 = exp_par_gamma * mu20
        alpha1 = errors[i, 2] * exp[2]
        alpha2 = errors[i, 3] * exp[3]

        j_is_larger = mu10 > mu20
        j_is_smaller = not j_is_larger
        threshold2 = (1 + mu10 * alpha1) / (c + alpha1)
        threshold3 = (1 + mu20 * alpha2) / (c + alpha2)

        case1 = j_is_larger * (mu10 < 1 / c)
        case2 = j_is_larger * (mu21 >= threshold2)
        case3 = j_is_larger ^ (case1 | case2)
        case4 = j_is_smaller * (mu20 < 1 / c)
        case5 = j_is_smaller * (mu11 >= threshold3)
        case6 = j_is_smaller ^ (case4 | case5)

        t0 = case1*c+case2 * (c + alpha1 + alpha2) / (1 + mu11 * alpha1 + mu21 * alpha2) +case3 / threshold2 +case4 * c +case5 * (c + alpha1 + alpha2) / (1 + mu11 * alpha1 + mu21 * alpha2) + case6 / threshold3
        t1 = case2 * (t0 * alpha1 * mu11 - alpha1) +case3 * (t0 * alpha1 * mu10 - alpha1) +case5 * (t0 * alpha1 * mu11 - alpha1)
        t2 = c - t0 - t1

        p12 = case2 + case5
        p1 = case3 + p12
        p2 = case6 + p12

        t1_sum += t1
        t2_sum += t2
        p1_sum += p1
        p2_sum += p2

    return t1_sum/n, t2_sum/n, p1_sum/n, p2_sum/n

更新#2:實現了cdef (#2),python對象消除(#4)和多線程(#6)想法。 #2和#4的好處微不足道,但對於#6卻是必需的,因為無法在OpenMP prange循環中訪問GIL。 有了多線程,您的四核筆記本電腦將獲得2.5倍的額外速度提速,相當於比原始速度快27.5倍的代碼。 我的outer_loop函數雖然不能完全准確,因為它會outer_loop重新計算相同的結果,但是對於一個測試用例來說應該足夠了。 完整的代碼如下:

from libc cimport math as cmath
from libc.stdint cimport *
from libc.stdlib cimport *
from cython.parallel cimport prange

def mktout(list mean_mu_alpha, double[:, ::1] errors, double par_gamma):
    cdef:
        size_t i, n
        double[4] exp
        double exp_par_gamma
        double mu10, mu11, mu20, mu21
        double alpha1, alpha2
        bint j_is_larger, j_is_smaller
        double threshold2, threshold3
        bint case1, case2, case3, case4, case5, case6
        double t0, t1, t2
        double p12, p1, p2
        double t1_sum, t2_sum, p1_sum, p2_sum
        double c

    #compute the exp outside of the loop
    n = errors.shape[0]
    exp[0] = cmath.exp(<double>mean_mu_alpha[0])
    exp[1] = cmath.exp(<double>mean_mu_alpha[1])
    exp[2] = cmath.exp(<double>mean_mu_alpha[2])
    exp[3] = cmath.exp(<double>mean_mu_alpha[3])
    exp_par_gamma = cmath.exp(par_gamma)
    c = 168.0

    t1_sum = 0.0
    t2_sum = 0.0
    p1_sum = 0.0
    p2_sum = 0.0

    for i in range(n):
        mu10 = errors[i, 0] * exp[0]
        mu11 = exp_par_gamma * mu10
        mu20 = errors[i, 1] * exp[1]
        mu21 = exp_par_gamma * mu20
        alpha1 = errors[i, 2] * exp[2]
        alpha2 = errors[i, 3] * exp[3]

        j_is_larger = mu10 > mu20
        j_is_smaller = not j_is_larger
        threshold2 = (1 + mu10 * alpha1) / (c + alpha1)
        threshold3 = (1 + mu20 * alpha2) / (c + alpha2)

        case1 = j_is_larger * (mu10 < 1 / c)
        case2 = j_is_larger * (mu21 >= threshold2)
        case3 = j_is_larger ^ (case1 | case2)
        case4 = j_is_smaller * (mu20 < 1 / c)
        case5 = j_is_smaller * (mu11 >= threshold3)
        case6 = j_is_smaller ^ (case4 | case5)

        t0 = case1*c+case2 * (c + alpha1 + alpha2) / (1 + mu11 * alpha1 + mu21 * alpha2) +case3 / threshold2 +case4 * c +case5 * (c + alpha1 + alpha2) / (1 + mu11 * alpha1 + mu21 * alpha2) + case6 / threshold3
        t1 = case2 * (t0 * alpha1 * mu11 - alpha1) +case3 * (t0 * alpha1 * mu10 - alpha1) +case5 * (t0 * alpha1 * mu11 - alpha1)
        t2 = c - t0 - t1

        p12 = case2 + case5
        p1 = case3 + p12
        p2 = case6 + p12

        t1_sum += t1
        t2_sum += t2
        p1_sum += p1
        p2_sum += p2

    return t1_sum/n, t2_sum/n, p1_sum/n, p2_sum/n

ctypedef struct Vec4:
    double a
    double b
    double c
    double d

def outer_loop(list mean_mu_alpha, double[:, ::1] errors, double par_gamma, size_t n):
    cdef:
        size_t i
        Vec4 mean_vec
        Vec4 out

    mean_vec.a = <double>(mean_mu_alpha[0])
    mean_vec.b = <double>(mean_mu_alpha[1])
    mean_vec.c = <double>(mean_mu_alpha[2])
    mean_vec.d = <double>(mean_mu_alpha[3])

    with nogil:
        for i in prange(n):
            cy_mktout(&out, &mean_vec, errors, par_gamma)
    return out

cdef void cy_mktout(Vec4 *out, Vec4 *mean_mu_alpha, double[:, ::1] errors, double par_gamma) nogil:
    cdef:
        size_t i, n
        double[4] exp
        double exp_par_gamma
        double mu10, mu11, mu20, mu21
        double alpha1, alpha2
        bint j_is_larger, j_is_smaller
        double threshold2, threshold3
        bint case1, case2, case3, case4, case5, case6
        double t0, t1, t2
        double p12, p1, p2
        double t1_sum, t2_sum, p1_sum, p2_sum
        double c

    #compute the exp outside of the loop
    n = errors.shape[0]
    exp[0] = cmath.exp(mean_mu_alpha.a)
    exp[1] = cmath.exp(mean_mu_alpha.b)
    exp[2] = cmath.exp(mean_mu_alpha.c)
    exp[3] = cmath.exp(mean_mu_alpha.d)
    exp_par_gamma = cmath.exp(par_gamma)
    c = 168.0

    t1_sum = 0.0
    t2_sum = 0.0
    p1_sum = 0.0
    p2_sum = 0.0

    for i in range(n):
        mu10 = errors[i, 0] * exp[0]
        mu11 = exp_par_gamma * mu10
        mu20 = errors[i, 1] * exp[1]
        mu21 = exp_par_gamma * mu20
        alpha1 = errors[i, 2] * exp[2]
        alpha2 = errors[i, 3] * exp[3]

        j_is_larger = mu10 > mu20
        j_is_smaller = not j_is_larger
        threshold2 = (1 + mu10 * alpha1) / (c + alpha1)
        threshold3 = (1 + mu20 * alpha2) / (c + alpha2)

        case1 = j_is_larger * (mu10 < 1 / c)
        case2 = j_is_larger * (mu21 >= threshold2)
        case3 = j_is_larger ^ (case1 | case2)
        case4 = j_is_smaller * (mu20 < 1 / c)
        case5 = j_is_smaller * (mu11 >= threshold3)
        case6 = j_is_smaller ^ (case4 | case5)

        t0 = case1*c+case2 * (c + alpha1 + alpha2) / (1 + mu11 * alpha1 + mu21 * alpha2) +case3 / threshold2 +case4 * c +case5 * (c + alpha1 + alpha2) / (1 + mu11 * alpha1 + mu21 * alpha2) + case6 / threshold3
        t1 = case2 * (t0 * alpha1 * mu11 - alpha1) +case3 * (t0 * alpha1 * mu10 - alpha1) +case5 * (t0 * alpha1 * mu11 - alpha1)
        t2 = c - t0 - t1

        p12 = case2 + case5
        p1 = case3 + p12
        p2 = case6 + p12

        t1_sum += t1
        t2_sum += t2
        p1_sum += p1
        p2_sum += p2

    out.a = t1_sum/n
    out.b = t2_sum/n
    out.c = p1_sum/n
    out.d = p2_sum/n

我使用的setup.py文件如下(具有所有優化和OpenMP標志):

from distutils.core import setup
from Cython.Build import cythonize
from distutils.core import Extension
import numpy as np
import os
import shutil
import platform

libraries = {
    "Linux": [],
    "Windows": [],
}
language = "c"
args = ["-w", "-std=c11", "-O3", "-ffast-math", "-march=native", "-fopenmp"]
link_args = ["-std=c11", "-fopenmp"]

annotate = True
directives = {
    "binding": True,
    "boundscheck": False,
    "wraparound": False,
    "initializedcheck": False,
    "cdivision": True,
    "nonecheck": False,
    "language_level": "3",
    #"c_string_type": "unicode",
    #"c_string_encoding": "utf-8",
}

if __name__ == "__main__":
    system = platform.system()
    libs = libraries[system]
    extensions = []
    ext_modules = []

    #create extensions
    for path, dirs, file_names in os.walk("."):
        for file_name in file_names:
            if file_name.endswith("pyx"):
                ext_path = "{0}/{1}".format(path, file_name)
                ext_name = ext_path \
                    .replace("./", "") \
                    .replace("/", ".") \
                    .replace(".pyx", "")
                ext = Extension(
                    name=ext_name, 
                    sources=[ext_path], 
                    libraries=libs,
                    language=language,
                    extra_compile_args=args,
                    extra_link_args=link_args,
                    include_dirs = [np.get_include()],
                )
                extensions.append(ext)

    #setup all extensions
    ext_modules = cythonize(
        extensions, 
        annotate=annotate, 
        compiler_directives=directives,
    )
    setup(ext_modules=ext_modules)

    """
    #immediately remove build directory
    build_dir = "./build"
    if os.path.exists(build_dir):
        shutil.rmtree(build_dir)
    """

更新#3:根據@ GZ0的建議,在許多情況下,代碼中的表達式將計算為零並被浪費地計算。 我嘗試使用以下代碼消除這些區域(在修復case3case6語句之后):

cdef void cy_mktout_if(Vec4 *out, Vec4 *mean_mu_alpha, double[:, ::1] errors, double par_gamma) nogil:
    cdef:
        size_t i, n
        double[4] exp
        double exp_par_gamma
        double mu10, mu11, mu20, mu21
        double alpha1, alpha2
        bint j_is_larger
        double threshold2, threshold3
        bint case1, case2, case3, case4, case5, case6
        double t0, t1, t2
        double p12, p1, p2
        double t1_sum, t2_sum, p1_sum, p2_sum
        double c

    #compute the exp outside of the loop
    n = errors.shape[0]
    exp[0] = cmath.exp(mean_mu_alpha.a)
    exp[1] = cmath.exp(mean_mu_alpha.b)
    exp[2] = cmath.exp(mean_mu_alpha.c)
    exp[3] = cmath.exp(mean_mu_alpha.d)
    exp_par_gamma = cmath.exp(par_gamma)
    c = 168.0

    t1_sum = 0.0
    t2_sum = 0.0
    p1_sum = 0.0
    p2_sum = 0.0

    for i in range(n):
        mu10 = errors[i, 0] * exp[0]
        mu11 = exp_par_gamma * mu10
        mu20 = errors[i, 1] * exp[1]
        mu21 = exp_par_gamma * mu20
        alpha1 = errors[i, 2] * exp[2]
        alpha2 = errors[i, 3] * exp[3]

        j_is_larger = mu10 > mu20
        j_is_smaller = not j_is_larger
        threshold2 = (1 + mu10 * alpha1) / (c + alpha1)
        threshold3 = (1 + mu20 * alpha2) / (c + alpha2)

        if j_is_larger:
            case1 = mu10 < 1 / c
            case2 = mu21 >= threshold2
            case3 = not (case1 | case2)

            t0 = case1*c + case2 * (c + alpha1 + alpha2) / (1 + mu11 * alpha1 + mu21 * alpha2) + case3 / threshold2
            t1 = case2 * (t0 * alpha1 * mu11 - alpha1) + case3 * (t0 * alpha1 * mu10 - alpha1)
            t2 = c - t0 - t1

            t1_sum += t1
            t2_sum += t2
            p1_sum += case2 + case3
            p2_sum += case2

        else:
            case4 = mu20 < 1 / c
            case5 = mu11 >= threshold3
            case6 = not (case4 | case5)

            t0 = case4 * c + case5 * (c + alpha1 + alpha2) / (1 + mu11 * alpha1 + mu21 * alpha2) + case6 / threshold3
            t1 = case5 * (t0 * alpha1 * mu11 - alpha1)
            t2 = c - t0 - t1

            t1_sum += t1
            t2_sum += t2
            p1_sum += case5
            p2_sum += case5 + case6

    out.a = t1_sum/n
    out.b = t2_sum/n
    out.c = p1_sum/n
    out.d = p2_sum/n

對於10000次迭代,當前代碼執行如下:

outer_loop: 0.5116949229995953 seconds
outer_loop_if: 0.617649456995423 seconds
mktout: 0.9221872320049442 seconds
mktout_if: 1.430276553001022 seconds
python: 10.116664300003322 seconds

我認為導致結果的條件和分支錯誤預測的代價出乎意料的是使該函數變慢,但是我希望能為您清除此問題提供任何幫助。

暫無
暫無

聲明:本站的技術帖子網頁,遵循CC BY-SA 4.0協議,如果您需要轉載,請注明本站網址或者原文地址。任何問題請咨詢:yoyou2525@163.com.

 
粵ICP備18138465號  © 2020-2024 STACKOOM.COM