簡體   English   中英

使用帶有快速傅里葉變換的 GEKKO

[英]Using GEKKO with Fast Fourier Transform

我實際上是在嘗試使用 GEKKO 上提供的 IPOPT Optimisor 來優化大型非凸非線性問題。為此,我需要使用帶有 scipy 的快速傅里葉變換。首先,讓我們修復我們的示例數據(為簡單起見):

import numpy as np
import pandas as pd
import math
from scipy import *
from scipy.integrate import quad
import scipy.stats as ss
import scipy.optimize as scpo
from scipy import sparse
from scipy.fftpack import ifft
from scipy.interpolate import interp1d
from scipy.optimize import fsolve
from functools import partial

r,prices, strikes, spreads,s0,T  = 0,array([1532.45 , 1507.55 , 1482.65 , 1457.8  , 1432.95 , 1408.1  ,
        1383.25 , 1358.45 , 1333.6  , 1308.8  , 1284.   , 1259.2  ,
        1234.45 , 1209.7  , 1037.15 , 1012.55 ,  988.05 ,  963.35 ,
         938.9  ,  914.3  ,  889.8  ,  865.5  ,  841.   ,  816.65 ,
         792.45 ,  768.1  ,  743.95 ,  719.85 ,  695.85 ,  672.   ,
         648.1  ,  624.5  ,  600.9  ,  577.5  ,  554.2  ,  531.   ,
         508.15 ,  485.35 ,  462.9  ,  440.65 ,  418.65 ,  396.85 ,
         375.55 ,  354.5  ,  333.9  ,  313.65 ,  293.85 ,  255.75 ,
         237.55 ,  219.8  ,  202.8  ,  186.35 ,  170.55 ,  155.4  ,
         141.05 ,  127.4  ,  113.5  ,  101.35 ,   90.1  ,   79.65 ,
          70.   ,   61.3  ,   53.4  ,   46.35 ,   34.5  ,   29.6  ,
          25.35 ,   18.55 ,   15.85 ,   13.55 ,   11.55 ,    9.9  ,
           7.35 ,    5.45 ,    3.075,    2.7  ]),array([12500., 12525., 12550., 12575., 12600., 12625., 12650., 12675.,
        12700., 12725., 12750., 12775., 12800., 12825., 13000., 13025.,
        13050., 13075., 13100., 13125., 13150., 13175., 13200., 13225.,
        13250., 13275., 13300., 13325., 13350., 13375., 13400., 13425.,
        13450., 13475., 13500., 13525., 13550., 13575., 13600., 13625.,
        13650., 13675., 13700., 13725., 13750., 13775., 13800., 13850.,
        13875., 13900., 13925., 13950., 13975., 14000., 14025., 14050.,
        14075., 14100., 14125., 14150., 14175., 14200., 14225., 14250.,
        14300., 14325., 14350., 14400., 14425., 14450., 14475., 14500.,
        14550., 14600., 14700., 14725.]),array([29.7 , 29.7 , 29.7 , 29.8 , 29.7 , 29.8 , 29.7 , 29.7 , 29.8 ,
        29.8 , 29.8 , 29.8 , 29.7 , 29.8 , 10.3 , 10.3 , 10.5 , 10.3 ,
        10.6 , 10.4 , 10.4 , 10.6 , 10.4 , 10.5 , 10.7 , 10.4 , 10.5 ,
        10.5 , 10.5 , 10.8 , 10.6 , 10.8 , 10.6 , 10.8 , 10.6 , 10.6 ,
        10.9 , 10.5 , 10.8 , 10.7 , 10.7 , 10.3 , 10.5 , 10.4 , 10.2 ,
        10.1 ,  9.9 ,  9.5 ,  9.3 ,  9.  ,  8.8 ,  8.5 ,  8.3 ,  8.2 ,
         7.9 ,  7.6 ,  3.8 ,  3.7 ,  3.6 ,  3.5 ,  3.4 ,  3.2 ,  3.2 ,
         3.1 ,  2.8 ,  2.6 ,  2.5 ,  2.3 ,  2.1 ,  2.1 ,  1.9 ,  1.8 ,
         1.7 ,  1.5 ,  1.25,  1.2 ]),14000,0.05

那么傅里葉函數:

class Heston_pricer():

    def __init__(self, Option_info, Process_info ):
        """
        Process_info: a instance of "Heston_process.", which contains (mu, rho, sigma, theta, kappa)
        Option_info: of type Option_param, which contains (S0,K,T)
        """
        self.r = Process_info.mu              # interest rate
        self.sigma = Process_info.sigma       # Heston parameters
        self.theta = Process_info.theta       
        self.kappa = Process_info.kappa       
        self.rho = Process_info.rho           

        self.S0 = Option_info.S0          # current price
        self.v0 = Option_info.v0          # spot variance
        self.K = Option_info.K            # strike
        self.T = Option_info.T            # maturity(in years)
        self.exercise = Option_info.exercise
        self.payoff = Option_info.payoff

    # payoff function
    def payoff_f(self, S):
        if self.payoff == "call":
            Payoff = np.maximum( S - self.K, 0 )
        elif self.payoff == "put":    
            Payoff = np.maximum( self.K - S, 0 )  
        return Payoff

    # FFT method. It returns a vector of prices.
    def FFT(self, K): # K: strikes
        K = np.array(K)

        # Heston characteristic function (proposed by Schoutens 2004)
        def cf_Heston_good(u, t, v0, mu, kappa, theta, sigma, rho):
            xi = kappa - sigma*rho*u*1j
            d = m.sqrt( xi**2 + sigma**2 * (u**2 + 1j*u) ) 
            g1 = (xi+d)/(xi-d)  
            g2 = 1/g1
            cf = m.exp( 1j*u*mu*t + (kappa*theta)/(sigma**2) * ( (xi-d)*t - 2*m.log( (1-g2*m.exp(-d*t))/(1-g2) ))\
                      + (v0/sigma**2)*(xi-d) * (1-m.exp(-d*t))/(1-g2*m.exp(-d*t))) 
            return cf

        cf_H_b_good = partial(cf_Heston_good, t=self.T, v0=self.v0, mu=self.r, theta=self.theta, 
                                  sigma=self.sigma, kappa=self.kappa, rho=self.rho)
        if self.payoff == "call":
            return fft_(K, self.S0, self.r, self.T, cf_H_b_good)
        elif self.payoff == "put":        # put-call parity
            return fft_(K, self.S0, self.r, self.T, cf_H_b_good) - self.S0 + K*m.exp(-self.r*self.T)

class Heston_process():
  def __init__(self, mu=0, rho=0, sigma=0.00001, theta=0.4, kappa=.00001):
            """
            r: risk free constant rate
            rho: correlation between stock noise and variance noise (|rho| must be <=1)
            theta: long term mean of the variance process(positive)
            sigma: volatility coefficient(positive)
            kappa: mean reversion coefficient for the variance process(positive)
            """
            self.mu, self.rho, self.theta, self.sigma, self.kappa = mu, rho, theta, sigma, kappa

def fft_(K, S0, r, T, cf): # interp support cubic 
    """ 
    K = vector of strike
    S0 = spot price scalar
    cf = characteristic function
    """
    N=2**15                         # FFT more efficient for N power of 2
    B = 500                         # integration limit 

    dx = B/N
    x = np.arange(N) * dx

    weight = 3 + (-1)**(np.arange(N)+1) # Simpson weights
    weight[0] = 1; weight[N-1]=1

    dk = 2*np.pi/B
    b = N * dk /2
    ks = -b + dk * np.arange(N)

    integrand = m.exp(- 1j * b *(np.arange(N))*dx) * cf(x - 0.5j) * 1/(x**2 + 0.25) * weight * dx/3
    integral_value = np.real(ifft(integrand)*N)
    spline_cub = interp1d(ks, integral_value, kind="cubic") # cubic will fit better than linear
    prices = S0 - m.sqrt(S0 * K) * m.exp(-r*T)/np.pi * spline_cub( m.log(S0/K) )
    return prices

# A class that stores option parameters (in order to write BS/Heston class neatly)
class Option_param():  
    def __init__(self, S0=10000, K=10000, T=.1, v0=0.04, payoff="call", exercise="European"):
        """
        S0: current stock price
        K: Strike price
        T: time to maturity
        v0: (optional) spot variance 
        exercise: European or American
        """
        self.S0, self.v0, self.K, self.T, self.exercise, self.payoff = S0, v0, K, T, exercise, payoff

現在讓我們使用 GEKKO:

#Initialize Model
m = GEKKO()

#define parameter
eq = m.Param(value=5)

#initialize variables
x1,x2,x3,x4,x5 = [m.Var(lb=-1, ub=1),m.Var(lb=1e-3, ub=1),m.Var(lb=1e-3, ub=1),m.Var(lb=1e-3, ub=20),m.Var(lb=1e-3, ub=1)]

#initial values
x1.value = 0
x2.value = 0.5
x3.value = 0.5
x4.value = 0.5
x5.value = 0.5

X = [x1,x2,x3,x4,x5]

#Equations,Feller Condition
m.Equation(2*x3*x4 - x2*x2 >=0)

def least_sq(x):
    """ Objective function """
    Heston_param = Heston_process(mu=0, rho=X[0], sigma=X[1], theta=X[2], kappa=X[3])
    m = 1/(spreads**2)
    if len(m) == 1:
      l = 1
    else:
      l = (m - np.min(m))/(np.max(m)-np.min(m))
    opt_param = Option_param(S0=s0, K=strikes, T=T, v0=X[4], exercise="European", payoff="call" )
    Hest = Heston_pricer(opt_param, Heston_param)
    prices_calib = Hest.FFT(strikes)
    results = (l * (prices_calib-prices)**2)/len(prices)
    return results

m.Obj(m.sum(least_sq(X)))
#Set global options
m.options.IMODE = 3 #steady state optimization

#Solve simulation
m.solve()

#Results
print('')
print('Results')
print('x1: ' + str(x1.value))
print('x2: ' + str(x2.value))
print('x3: ' + str(x3.value))
print('x4: ' + str(x4.value))
print('x5: ' + str(x5.value))

這里的問題是 ifft scipy function 由於 GEKKO 給出的變量類型不同而無法正常工作。問題是我不知道如何替換或避免它。

錯誤是這樣的:

<ipython-input-16-305a2bb0769b> in fft_(K, S0, r, T, cf)
     78 
     79     integrand = m.exp(- 1j * b *m.CV(np.arange(N))*dx) * cf(x - 0.5j) * 1/(x**2 + 0.25) * weight * dx/3
---> 80     integral_value = np.real(ifft(integrand)*N)
     81     spline_cub = interp1d(ks, integral_value, kind="cubic") # cubic will fit better than linear
     82     prices = S0 - m.sqrt(S0 * K) * m.exp(-r*T)/np.pi * spline_cub( m.log(S0/K) )

/usr/local/lib/python3.7/dist-packages/scipy/_lib/deprecation.py in call(*args, **kwargs)
     18             warnings.warn(msg, category=DeprecationWarning,
     19                           stacklevel=stacklevel)
---> 20             return fun(*args, **kwargs)
     21         call.__doc__ = msg
     22         return call

<__array_function__ internals> in ifft(*args, **kwargs)

/usr/local/lib/python3.7/dist-packages/numpy/fft/_pocketfft.py in ifft(a, n, axis, norm)
    274     a = asarray(a)
    275     if n is None:
--> 276         n = a.shape[axis]
    277     if norm is not None and _unitary(norm):
    278         inv_norm = sqrt(max(n, 1))

IndexError: tuple index out of range

有人可以幫我調試一下嗎。謝謝

Gekko 要求表達式不是黑盒,而是能夠用特殊類型的變量(Gekko 類型)表示,用於自動微分和稀疏檢測。 使用 Scipy.optimize.minimize 等求解器可能會更好地解決此問題。 下面 就一個簡單的問題對兩者進行比較

Scipy

import numpy as np
from scipy.optimize import minimize

def objective(x):
    return x[0]*x[3]*(x[0]+x[1]+x[2])+x[2]

def constraint1(x):
    return x[0]*x[1]*x[2]*x[3]-25.0

def constraint2(x):
    sum_eq = 40.0
    for i in range(4):
        sum_eq = sum_eq - x[i]**2
    return sum_eq

# initial guesses
n = 4
x0 = np.zeros(n)
x0[0] = 1.0
x0[1] = 5.0
x0[2] = 5.0
x0[3] = 1.0

# show initial objective
print('Initial Objective: ' + str(objective(x0)))

# optimize
b = (1.0,5.0)
bnds = (b, b, b, b)
con1 = {'type': 'ineq', 'fun': constraint1} 
con2 = {'type': 'eq', 'fun': constraint2}
cons = ([con1,con2])
solution = minimize(objective,x0,method='SLSQP',\
                    bounds=bnds,constraints=cons)
x = solution.x

# show final objective
print('Final Objective: ' + str(objective(x)))

# print solution
print('Solution')
print('x1 = ' + str(x[0]))
print('x2 = ' + str(x[1]))
print('x3 = ' + str(x[2]))
print('x4 = ' + str(x[3]))

壁虎

from gekko import GEKKO    

m = GEKKO()

#initialize variables
x1,x2,x3,x4 = [m.Var(lb=1,ub=5) for i in range(4)]
x1.value = 1; x2.value = 5; x3.value = 5; x4.value = 1

m.Equation(x1*x2*x3*x4>=25)
m.Equation(x1**2+x2**2+x3**2+x4**2==40)

m.Minimize(x1*x4*(x1+x2+x3)+x3)

m.solve()

print('x1: ' + str(x1.value))
print('x2: ' + str(x2.value))
print('x3: ' + str(x3.value))
print('x4: ' + str(x4.value))

暫無
暫無

聲明:本站的技術帖子網頁,遵循CC BY-SA 4.0協議,如果您需要轉載,請注明本站網址或者原文地址。任何問題請咨詢:yoyou2525@163.com.

 
粵ICP備18138465號  © 2020-2024 STACKOOM.COM