简体   繁体   中英

C# equivalent to C++ friend keyword?

I am new to C#, and I have a problem for which in C++ I would normally use the friend identifier. Now I know the friend keyword doesn't exist in C#, but I don't have any experience with how to work around this (except for making all class variables public properties, which I want to avoid if I can).

I have the following scenario:

public class A 
{
    public string Info { get; set; }
    /* much more data */
}

public class B
{
    private A m_instanceOfA;

    public B(A a) { m_instanceOfA = a; }

    public Info { get return A.info; set A.Info  = value; }

    /* And some more data of its own*/
}

public class C
{
    private A m_instanceOfA;

    // I need a constructor of C, which needs to set C.m_instanceOfA
    // to the same value as b.m_instanceOfA.
    public C(B b) { m_instanceOfA = b.m_instanceOfA ; } // <--- Not allowed!

    /* And some more data of its own*/
}

Is there any other clever way, without making B.m_instanceOfA public, to give C access to this variable (only in the constructor)?

You can use the trick shown below to create a method FriendRecieveMessageFromAlice on Bob that can only be called by Alice . An evil class, Eve , won't be able to call that method without using reflection on private members.

I'm curious to know if this or another solution have been suggested before by other people. I've been looking for a solution to that problem for months, and I never saw one that ensured real friend semantics provided that reflection isn't used (you can circumvent nearly anything with it).

Alice and Bob

public interface IKey { }

public class Alice
{
    // Alice, Bob and Carol must only have private constructors, so only nested classes can subclass them.
    private Alice() { }
    public static Alice Create() { return new Alice(); }

    private class AlicePrivateKey : Alice, IKey { }

    public void PublicSendMessageToBob() {
        Bob.Create().FriendRecieveMessageFromAlice<AlicePrivateKey>(42);
    }

    public void FriendRecieveMessageFromBob<TKey>(int message) where TKey : Bob, IKey {
        System.Console.WriteLine("Alice: I recieved message {0} from my friend Bob.", message);
    }
}

public class Bob
{
    private Bob() { }
    public static Bob Create() { return new Bob(); }

    private class BobPrivateKey : Bob, IKey { }

    public void PublicSendMessageToAlice() {
        Alice.Create().FriendRecieveMessageFromBob<BobPrivateKey>(1337);
    }

    public void FriendRecieveMessageFromAlice<TKey>(int message) where TKey : Alice, IKey {
        System.Console.WriteLine("Bob: I recieved message {0} from my friend Alice.", message);
    }
}

class Program
{
    static void Main(string[] args) {
        Alice.Create().PublicSendMessageToBob();
        Bob.Create().PublicSendMessageToAlice();
    }
}

Eve

public class Eve
{
    // Eve can't write that, it won't compile:
    // 'Alice.Alice()' is inaccessible due to its protection level
    private class EvePrivateKey : Alice, IKey { }

    public void PublicSendMesssageToBob() {
        // Eve can't write that either:
        // 'Alice.AlicePrivateKey' is inaccessible due to its protection level
        Bob.Create().FriendRecieveMessageFromAlice<Alice.AlicePrivateKey>(42);
    }
}

How it works

The trick is that the method Bob.FriendRecieveMessageFromAlice requires a (dummy) generic type parameter which serves as a token. That generic type must inherit from both Alice , and from a dummy interface IKey .

Since Alice does not implement IKey itself, the caller needs to provide some subclass of Alice which does implement IKey . However, Alice only has private constructors, so it can only be subclassed by nested classes, and not by classes declared elsewhere.

This means that only a class nested in Alice can subclass it to implement IKey . That's what AlicePrivateKey does, and since it is declared private, only Alice can pass it as the generic argument to the Bob.FriendRecieveMessageFromAlice , so only Alice can call that method.

We then do the same thing the other way round so that only Bob can call Alice.FriendRecieveMessageFromBob .

Leaking the key

It is worth noting that, when called, Bob.FriendRecieveMessageFromAlice has access to the TKey generic type parameter, and could use it to spoof a call from Alice on another method OtherClass.OtherMethod<OtherTkey> accepting a OtherTKey : Alice, IKey . It would therefore be safer to make the keys inherit from distinct interfaces: Alice, IBobKey for the first, and Alice, IOtherKey for the second.

Better than C++ friend

  • Even Bob itself can't call its own method Bob.FriendRecieveMessageFromAlice .
  • Bob can have multiple friends with distinct friend methods:

     // Can only be called by Alice, not by Carol or Bob itself Bob.FriendRecieveMessageFromAlice <TKey>(int message) where TKey : Alice, IKey { } // Can only be called by Carol, not by Alice or Bob itself Bob.FriendRecieveMessageFromCarol <TKey>(int message) where TKey : Carol, IKey { } 

I'd be interested to know if there is some way to find tricks like this in a more efficient way than brute-force trial and error. Some kind of "algebra of C#'s type system", that tells us what restrictions can be enforced and what can't, but I haven't seen any discussion on that kind of topic.

Internal

You can use the internal keyword. Your type (or type member) will then only be visible to other types within the same assembly; And also:

If you need your internal types to be visible from other assemblies , you can use the InternalsVisibleToAttribute . This attribute targets your whole assembly and is usually written in the AssemblyInfo.cs file.


PS: Friend keyword doesn't exists in C# but the concept of friendship exists (not exactly the same as the one in C++), it is described on the Friend Assemblies article from the MSDN. Note also that a friend keyword exists in VB.NET and has the exact same behaviour than the C# internal keyword.

I modified the code you posted, so it should work as you want exactly:

using System.Reflection;
using System.Diagnostics;

public class A 
{
    public string Info { get; set; }
    /* much more data */
}

public class B
{
    private A m_instanceOfA;
    public string Info { get; set; }

    public B(A a) => Info = a;

    private readonly ConstructorInfo friend = typeof(C).GetConstructor(new Type[] { typeof(B) });
    public A InstanceOfA
    {
        get
        {
            if (new StackFrame(1).GetMethod() != friend)
               throw new Exception("Call this property only inside the constructor of C");
            return this.m_instanceOfA;
        }
    }
}

public class C
{
    private A m_instanceOfA;

    // Only the constructor of C can set his m_instanceOfA
    // to the same value as b.m_instanceOfA.
    public C(B b)
    {
        Info = b.InstanceOfA; // Call the public property, not the private field. Now it is allowed and it will work too, because you call it inside the constructor of C. In Main method, for example, an exception will be thrown, if you try to get InstanceOfA there.
    }
}

I think you're looking for the "internal" keyword - basically only visible to classes in the same assembly

Alternatively you could so something like (excuse the method names!) :

public interface IAmAFriendOfB {
   void DoSomethingWithA(A instanceOfA);
}

public class B {
    private A m_instanceOfA;

    public B(A a) { m_instanceOfA = a; }

    public void BeFriendlyWith(IAmAFriendOfB friend) {
       friend.DoSomethingWithA(m_instanceOfA);
    }

    // the rest of your class
}

public class C : IAmAFriendOfB {

    private A m_instanceOfA;

    public C(B b) {
        b.BeFriendlyWith(this);
    }

    void DoSomethingWithA(A instanceOfA) {
        m_instanceOfA = b.m_instanceOfA;
    }   
}

You can only use 5 accessibility modifiers:

public Access is not restricted.

protected Access is limited to the containing class or types derived from the containing class.

internal Access is limited to the current assembly.

protected internal Access is limited to the current assembly or types derived from the containing class.

private Access is limited to the containing type.

Here's another alternative using an internal class with a private singleton instance, which allows you to fine-tune which methods are exposed to the pseudo- friend class.

using System;

namespace Test
{
    public class A 
    {
        public string Info { get; set; }
        /* much more data */
    }

    public class B
    {
        private A m_instanceOfA;

        public B(A a) { m_instanceOfA = a; }

        public string Info
        {
            get { return m_instanceOfA.Info; }
            set { m_instanceOfA.Info = value; }
        }

        // requires an instance of a private object, this establishes our pseudo-friendship
        internal A GetInstanceOfA(C.AGetter getter) { return getter.Get(m_instanceOfA); }

        /* And some more data of its own*/
    }

    public class C
    {
        private A m_instanceOfA;

        private static AGetter m_AGetter; // initialized before first use; not visible outside of C

        // class needs to be visible to B, actual instance does not (we call b.GetInstanceOfA from C)
        internal class AGetter
        {
            static AGetter() { m_AGetter = new AGetter(); } // initialize singleton

            private AGetter() { } // disallow instantiation except our private singleton in C

            public A Get(A a) { return a; } // force a NullReferenceException if calling b.GetInstanceOfA(null)
        }

        static C()
        {
            // ensure that m_AGetter is initialized
            System.Runtime.CompilerServices.RuntimeHelpers.RunClassConstructor(typeof(AGetter).TypeHandle);
        }

        public C(B b)
        {
            m_instanceOfA = b.GetInstanceOfA(m_AGetter);
        }

        public string Info
        {
            get { return m_instanceOfA.Info; }
            set { m_instanceOfA.Info = value; }
        }

        /* And some more data of its own*/
    }

    public class Test
    {
        public static void Main()
        {
            A a = new A();
            B b = new B(a);
            C c = new C(b);
            c.Info = "Hello World!";
            Console.WriteLine(a.Info);
        }
    }
}

Live Demo

The C.AGetter class cannot be instantiated outside of itself, so C.m_AGetter (which is both private and static ) represents a singleton instance that is only accessible from within C . As B.GetInstanceOfA requires an instance of C.AGetter , this makes the function useless outside of C . The function is marked internal to minimize its exposure, but the argument should also act as a form of self-documentation that it isn't meant for common use.

The interface alternative risks exposing methods beyond their intended scope (eg, a class implementing the interface where it should not have access to the exposed methods), while this approach prevents that. Naysayers of friend access may still object to it, but this keeps things much closer to the intended scope.

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM