简体   繁体   中英

Algorithms for dividing an array into n parts

In a recent campus Facebook interview i have asked to divide an array into 3 equal parts such that the sum in each array is roughly equal to sum/3.

My Approach
1. Sort The Array
2. Fill the array[k] (k=0) uptil (array[k]<=sum/3)
3. After that increment k and repeat the above step for array[k]

Is there any better algorithm for this or it is NP Hard Problem

This is a variant of the partition problem (see http://en.wikipedia.org/wiki/Partition_problem for details). In fact a solution to this can solve that one (take an array, pad with 0s, and then solve this problem) so this problem is NP hard.

There is a dynamic programming approach that is pseudo-polynomial. For each i from 0 to the size of the array, you keep track of all possible combinations of current sizes for the sub arrays, and their current sums. As long as there are a limited number possible sums of subsets of the array, this runs acceptably fast.

The solution that I would have suggested is to just go for "good enough" closeness. First let's consider the simpler problem with all values positive. Then sort by value descending. Take that array in threes. Build up the three subsets by always adding the largest of the triple to the one with the smallest sum, the smallest to the one with the largest, and the middle to the middle. You will end up dividing the array evenly, and the difference will be no more than the value of the third smallest element.

For the general case you can divide into positive and negative, use the above approach on each, and then brute force all combinations of a group of positives, a group of negatives, and the few leftover values in the middle that did not divide evenly.

Here are details on a dynamic programming solution if you are interested. The running time and memory usage is O(n*(sum)^2) where n is the size of your array and sum is the sum of absolute values of your array values. For each array index j from 1 to n, store all the possible values you can get for your 3 subset sums when you split the array from index 1 to j into 3 subsets. Also for each possibility, store one possible way to split the array to get the 3 sums. Then to extend this information for 1 to (j+1) given the information from 1 to j, simply take each possible combination of 3 sums for splitting 1 to j and form the 3 combinations of 3 sums you get when you choose to add the (j+1)th array element to any one of the 3 subsets. Finally, when you are done and reach j = n, go through the set of all combinations of 3 subset sums you can get when you split array positions 1 to n into 3 sets, and choose the one whose maximum deviation from sum/3 is minimized. At first this may seem like O(n*(sum)^3) complexity, but for each j and each combination of the first 2 subset sums, the 3rd subset sum is uniquely determined. (because you are not allowed to omit any elements of the array). Thus the complexity really is O(n*(sum)^2).

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM