简体   繁体   中英

A C++ iterator adapter which wraps and hides an inner iterator and converts the iterated type

Having toyed with this I suspect it isn't remotely possible, but I thought I'd ask the experts. I have the following C++ code:

class IInterface
{
    virtual void SomeMethod() = 0;
};

class Object
{
    IInterface* GetInterface() { ... }
};

class Container
{
private:
    struct Item
    {
        Object* pObject;
        [... other members ...]
    };
    std::list<Item> m_items;
};

I want to add these methods to Container:

MagicIterator<IInterface*> Begin();
    MagicIterator<IInterface*> End();

In order that callers can write:

Container c = [...]
for (MagicIterator<IInterface*> i = c.Begin(); i != c.End(); i++)
{
    IInterface* pItf = *i;
    [...]
}

So essentially I want to provide a class which appears to be iterating over some collection (which the caller of Begin() and End() is not allowed to see) of IInterface pointers, but which is actually iterating over a collection of pointers to other objects (private to the Container class) which can be converted into IInterface pointers.

A few key points:

  • MagicIterator is to be defined outside Container .
  • Container::Item must remain private.
  • MagicIterator has to iterate over IInterface pointers, despite the fact that Container holds a std::list<Container::Item> . Container::Item contains an Object* , and Object can be used to fetch IInterface* .
  • MagicIterator has to be reusable with several classes which resemble Container, but might internally have different list implementations holding different objects ( std::vector<SomeOtherItem> , mylist<YetAnotherItem> ) and with IInterface* obtained in a different manner each time.
  • MagicIterator should not contain container-specific code, though it may delegate to classes which do, provided such delegation is not hard coded to to particular containers inside MagicIterator (so is somehow resolved automatically by the compiler, for example).
  • The solution must compile under Visual C++ without use of other libraries (such as boost) which would require a license agreement from their authors.
  • Also, iteration may not allocate any heap memory (so no new() or malloc() at any stage), and no memcpy() .

Thanks for your time, even if you're just reading; this one's really been bugging me!

Whilst I've had some very interesting answers, none have met all the above requirements yet. 虽然我有一些非常有趣的答案,但还没有一个满足上述所有要求。 Notably the tricky areas are i) decoupling MagicIterator from Container somehow (default template arguments don't cut it), and ii) avoiding heap allocation; but I'm really after a solution which covers all of the above bullets.

I think you have two separate issues here:

First, create an iterator that will return the IInterface* from your list<Container::Item> . This is easily done with boost::iterator_adaptor :

class cont_iter
  : public boost::iterator_adaptor<
        cont_iter                       // Derived
      , std::list<Container::Item>::iterator // Base
      , IInterface*                     // Value
      , boost::forward_traversal_tag    // CategoryOrTraversal
      , IInterface*                     // Reference :)
    >
{
 public:
    cont_iter()
      : cont_iter::iterator_adaptor_() {}

    explicit cont_iter(const cont_iter::iterator_adaptor_::base_type& p)
      : cont_iter::iterator_adaptor_(p) {}

 private:
    friend class boost::iterator_core_access;
    IInterface* dereference() { return this->base()->pObject->GetInterface(); }
};

You would create this type as inner in Container and return in from its begin() and end() methods.

Second, you want the runtime-polymorphic MagicIterator . This is exactly what any_iterator does. the MagicIterator<IInterface*> is just any_iterator<IInterface*, boost::forward_traversal_tag, IInterface*> , and cont_iter can be just assigned to it.

Create an abstract IteratorImplementation class:

template<typename T>
class IteratorImplementation
{
    public:
        virtual ~IteratorImplementation() = 0;

        virtual T &operator*() = 0;
        virtual const T &operator*() const = 0;

        virtual Iterator<T> &operator++() = 0;
        virtual Iterator<T> &operator--() = 0;
};

And an Iterator class to wrap around it:

template<typename T>
class Iterator
{
    public:
        Iterator(IteratorImplementation<T> * = 0);
        ~Iterator();

        T &operator*();
        const T &operator*() const;

        Iterator<T> &operator++();
        Iterator<T> &operator--();

    private:
        IteratorImplementation<T> *i;
}

Iterator::Iterator(IteratorImplementation<T> *impl) :
    i(impl)
{
}

Iterator::~Iterator()
{
    delete i;
}

T &Iterator::operator*()
{
    if(!impl)
    {
        // Throw exception if you please.
        return;
    }

    return (*impl)();
}

// etc.

(You can make IteratorImplementation a class "inside" of Iterator to keep things tidy.)

In your Container class, return an instance of Iterator with a custom subclass of IteratorImplementation in the ctor :

class ObjectContainer
{
    public:
        void insert(Object *o);
        // ...

        Iterator<Object *> begin();
        Iterator<Object *> end();

    private:
        class CustomIteratorImplementation :
            public IteratorImplementation<Object *>
        {
            public:
                // Re-implement stuff here.
        }
};

Iterator<Object *> ObjectContainer::begin()
{
    CustomIteratorImplementation *impl = new CustomIteratorImplementation();  // Wish we had C++0x's "var" here.  ;P

    return Iterator<Object *>(impl);
}

Doesn't sound too complicated. You can define the iterator outside. You can also use typedefs. Something like this would fit i think. Note that it would be way cleaner if that MagicIterator would be not a free template, but a member of Item, typedefed in Container maybe. As it's now, there is a cyclic reference in it, which make it necassary to write some ugly workaround code.

namespace detail {
    template<typename T, typename U>
    struct constify;

    template<typename T, typename U>
    struct constify<T*, U*> {
        typedef T * type;
    };

    template<typename T, typename U>
    struct constify<T*, U const*> {
        typedef T const * type;
    };
}

template<typename DstType, 
         typename Container,
         typename InputIterator>
struct MagicIterator;

class Container
{
private:
    struct Item
    {
        Object* pObject;
    };

    std::list<Item> m_items;

public:

    // required by every Container for the iterator
    typedef std::list<Item> iterator;
    typedef std::list<Item> const_iterator;

    // convenience declarations
    typedef MagicIterator< IInterface*, Container, iterator > 
        item_iterator;
    typedef MagicIterator< IInterface*, Container, const_iterator > 
        const_item_iterator;

    item_iterator Begin();
    item_iterator End();
};

template<typename DstType, 
         typename Container = Container,
         typename InputIterator = typename Container::iterator>
struct MagicIterator : 
    // pick either const T or T, depending on whether it's a const_iterator.
    std::iterator<std::input_iterator_tag, 
                  typename detail::constify<
                           DstType, 
                           typename InputIterator::value_type*>::type> {
    typedef std::iterator<std::input_iterator_tag, 
                 typename detail::constify<
                          DstType, 
                          typename InputIterator::value_type*>::type> base;
    MagicIterator():wrapped() { }
    explicit MagicIterator(InputIterator const& it):wrapped(it) { }
    MagicIterator(MagicIterator const& that):wrapped(that.wrapped) { }

    typename base::value_type operator*() {
        return (*wrapped).pObject->GetInterface();
    }

    MagicIterator& operator++() {
        ++wrapped;
        return *this;
    }

    MagicIterator operator++(int) {
        MagicIterator it(*this);
        wrapped++;
        return it;
    }

    bool operator==(MagicIterator const& it) const {
        return it.wrapped == wrapped;
    }

    bool operator!=(MagicIterator const& it) const {
        return !(*this == it);
    }

    InputIterator wrapped;
};

// now that the iterator adepter is defined, we can define Begin and End
inline Container::item_iterator Container::Begin() {
    return item_iterator(m_items.begin());
}

inline Container::item_iterator Container::End() {
    return item_iterator(m_items.end());
}

Now, start using it:

for(MagicIterator<IInterface*> it = c.Begin(); it != c.End(); ++it) {
    // ...
}

You can also use a iterator mixin provided by boost, which works like the input version of boost::function_output_iterator. It calls your iterator's operator() which then returns the appropriate value, doing what we do above in our operator* in principle. You find it in random/detail/iterator_mixin.hpp . That would probably result in fewer code. But it also requires to wrack up our neck to ensure the friend-stuff because Item is private and the iterator isn't defined inside Item. Anyway, good luck :)

It really depends on the Container , because the return values of c.Begin() and c.End() are implementation-defined.

If a list of possible Container s is known to MagicIterator , a wrapper class could be used.

template<typename T>
class MagicIterator
{
    public:
        MagicIterator(std::vector<T>::const_iterator i)
        {
            vector_const_iterator = i;
        }

        // Reimplement similarly for more types.
        MagicIterator(std::vector<T>::iterator i);
        MagicIterator(std::list<T>::const_iterator i);
        MagicIterator(std::list<T>::iterator i);

        // Reimplement operators here...

    private:
        std::vector<T>::const_iterator vector_const_iterator;
        std::vector<T>::iterator       vector_iterator;
        std::list<T>::const_iterator   list_const_iterator;
        std::list<T>::iterator         list_iterator;
};

The easy way would be to use a template which accepts Container 's type:

// C++0x
template<typename T>
class Iterator :
    public T::iterator
{
    using T::iterator::iterator;
};

for(Iterator<Container> i = c.begin(); i != c.end(); ++i)
{
    // ...
}

More information here.

I see no reason why you can't implement this exactly as you've laid it out... am I missing something?

To clarify, you'll need to put some kind of accessor methods on your Container class. They can be private and you can declare MagicIterator as a friend, if you feel that's the best way to encapsulate it, but I'd expose them directly. These accessor methods would use a normal STL iterator inside Container and perform the conversion to IInterface. Thus the iterating would actually be done with the Container's accessor methods and MagicIterator would just be a kind of proxy object to make it easier. To make it reentrant, you could have the MagicIterator pass in some kind of ID to look up the STL iterator inside Container, or you could actually have it pass in the STL iterator as a void * .

访问者可能是一个更简单(因此更容易维护)的解决方案。

I've now found a solution which is fitter for my original purpose. I still don't like it though :)

The solution involves MagicIterator being templated on IInterface* and being constructed with both a void* to an iterator, the byte size of said iterator, and a table of pointers to functions which perform standard iteration functions on said void* such as increment, decrement, dereference, etc. MagicIterator assumes that it is safe to memcpy the given iterator into an internal buffer, and implements its own members by passing its own buffer as a void* to the supplied functions as if it were the original iterator.

Container then has to implement static iteration functions which cast back a supplied void* to a std::list::iterator. Container::begin() and Container::end() simply construct a std::list::iterator, pass a pointer to it into a MagicIterator along with a table of its iteration functions, and return the MagicIterator.

It's somewhat disgusting, and breaks my original rule regarding "no memcpy()", and makes assumptions about the internals of the iterators in question. But it avoids heap allocation, keeps Collection's internals (including Item) private, renders MagicIterator entirely independent of the collection in question and of IInterface*, and in theory allows MagicIterators to work with any collection (provided its iterators can be safely memcopy()'d).

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM