简体   繁体   中英

Graph Clustering for almost Clustered Graph by removing nodes(vertices)

I want to carry out Graph Clustering in a huge undirected graph with millions of edges and nodes. Graph is almost clustered with different clusters joined together only by some nodes(kind of ambiguous nodes which can relate to multiple clusters). There will be very few or almost no edges between two clusters . This problem is almost similar to finding vertex cut set of a graph, with one exception that graph needs to be partitioned into many components(their number being unknown).(Refer this picture https://docs.google.com/file/d/0B7_3zLD0XdtAd3ZwMFAwWDZuU00/edit?pli=1 )

Its almost like different strongly connected components sharing a couple of nodes between them and i am supposed to remove those nodes to separate those strongly connected components. Edges are weigthed but this problem is more like finding structures in a graph, so edge weigths won't be of relevance. (Another way to think about the problem would be to visualize Solid Spheres touching each other at some points with Spheres being those strongly connected components and touching points being those ambiguous nodes)

I am prototyping something, so am quiet short of time to pick up Graph Clustering Algorithms by myself and to select the best possible. Plus i need a solution that would cut nodes and not edges since different clusters share nodes and not edges in my case.

Is there any research paper, blog that addresses this or somewhat related problem? Or can anyone come up with a solution to this problem howsoever dirty.

Since millions of nodes and edges are involved, i would need a MapReduce implementation of the solution. Any inputs, links for that too?

Is there any current open source implementation in MapReduce that can i directly use?

I think this problem is analogous to Finding Communities in online social networks by removing vertices.

Your problem is not so simple. I am afraid that it is related to the clique problem, which is NP complete, so unless you quantify somehow the statement "there are almost no edges between the clusters", your problem might be still very difficult. But what I would do in your shoes, would be to try one dirty, greedy approach, namely regarding the nodes as the following kind of quasi-neural net:

Each vertex I would consider to have inputs, outputs and a sigmoid activation function which convert the input value (sum of inputs) into the output value. The output value, and I consider this important, would not be cloned and sent to all the neighbors, but rather divided evenly between the neighbors. In addition to this, I would define a logarithmic decay of activity in a neuron (self-suppression, suppressive connection to itself), defined by a decay parameter global for the net.

Now, I would start simulation with all the neurons starting from activity 0.5 (activity range is 0 to 1) with very high decay parameter, which would lead to all the neuronst quickly stabilizing in 0 state. I would then gradually decrease the decay parameter until the steady state result would yield the first clique with non-zero stable activity.

The question is what to do next. One possibility is to subtract the found clique from the graph and run the same process again until we find all the cliques. This greedy approach might succeed if your graph is indeed as well behaved (really almost clustered) as you say, but might lead to unexpected results otherwise. Another possibility is to give the found clique a unique clique smell that would be repulsive (mutual suppresion) to other cliques an rerun the algorithm until the second clique is found, give it a different clique smell repulsive to all others etc., until each node has its own assigned smell.

I think this would be as many big ideas as i have about this.

The key is, that since it is probably not possible to solve this problem in the general case (likely NP complete), you need to take use of whatever special properties your graph has. That means you need to play with parameters for a while until the algorithm solves 99% of the cases that you encounter. I don't think that it is possible to give the numerically precise answer to your question without long experimentation with the actual datasets that you encounter.

Since millions of nodes and edges are involved, i would need a MapReduce implementation of the solution. Any inputs, links for that too?

In my experience I doubt if using Map/Reduce over here would be truly advantageous. First 10^6 order of nodes isn't really that large [that too in a non hyper-connected graph, since you are considering clustering], and the over head of using Map/Reduce [unless you already have setup your hardware/software for it] for your problem will not be worth it.

Map/Reduce will work much better, where once you have solved the clustering issue, and then want to process each cluster with similar analysis. Basically when you can break your task into relatively isolated sub-tasks, which can be performed in parallel. This of course can be cascaded to several layers.

In a relatively similar situation, I personally first modelled my graph into a graph database (I used Neo4J, and would recommend it highly) and then ran my analytic and queries on it. You will be surprised as to how white board friendly this solution is, and even massively joined and connected queries will be executed near instantaneously especially at the scale of only a few million nodes. For example, you can do a filtered analysis, based on degrees of separation, followed by listing of commons.

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM