繁体   English   中英

使用 python 和 numpy 的梯度下降

[英]gradient descent using python and numpy

def gradient(X_norm,y,theta,alpha,m,n,num_it):
    temp=np.array(np.zeros_like(theta,float))
    for i in range(0,num_it):
        h=np.dot(X_norm,theta)
        #temp[j]=theta[j]-(alpha/m)*(  np.sum( (h-y)*X_norm[:,j][np.newaxis,:] )  )
        temp[0]=theta[0]-(alpha/m)*(np.sum(h-y))
        temp[1]=theta[1]-(alpha/m)*(np.sum((h-y)*X_norm[:,1]))
        theta=temp
    return theta



X_norm,mean,std=featureScale(X)
#length of X (number of rows)
m=len(X)
X_norm=np.array([np.ones(m),X_norm])
n,m=np.shape(X_norm)
num_it=1500
alpha=0.01
theta=np.zeros(n,float)[:,np.newaxis]
X_norm=X_norm.transpose()
theta=gradient(X_norm,y,theta,alpha,m,n,num_it)
print theta

上面代码中的 theta 是100.2 100.2 ,但在 matlab 中它应该是100.2 61.09这是正确的。

我认为你的代码有点过于复杂,需要更多的结构,否则你将失去所有方程和操作。 最后,这个回归归结为四个操作:

  1. 计算假设h = X * theta
  2. 计算损失= h - y,可能是平方成本(损失^ 2)/ 2m
  3. 计算梯度= X'*损失/ m
  4. 更新参数theta = theta - alpha * gradient

在你的情况下,我猜你和n混淆了m 这里m表示训练集中的示例数,而不是特征数。

我们来看看我的代码变体:

import numpy as np
import random

# m denotes the number of examples here, not the number of features
def gradientDescent(x, y, theta, alpha, m, numIterations):
    xTrans = x.transpose()
    for i in range(0, numIterations):
        hypothesis = np.dot(x, theta)
        loss = hypothesis - y
        # avg cost per example (the 2 in 2*m doesn't really matter here.
        # But to be consistent with the gradient, I include it)
        cost = np.sum(loss ** 2) / (2 * m)
        print("Iteration %d | Cost: %f" % (i, cost))
        # avg gradient per example
        gradient = np.dot(xTrans, loss) / m
        # update
        theta = theta - alpha * gradient
    return theta


def genData(numPoints, bias, variance):
    x = np.zeros(shape=(numPoints, 2))
    y = np.zeros(shape=numPoints)
    # basically a straight line
    for i in range(0, numPoints):
        # bias feature
        x[i][0] = 1
        x[i][1] = i
        # our target variable
        y[i] = (i + bias) + random.uniform(0, 1) * variance
    return x, y

# gen 100 points with a bias of 25 and 10 variance as a bit of noise
x, y = genData(100, 25, 10)
m, n = np.shape(x)
numIterations= 100000
alpha = 0.0005
theta = np.ones(n)
theta = gradientDescent(x, y, theta, alpha, m, numIterations)
print(theta)

首先,我创建一个小的随机数据集,它应该如下所示:

线性回归

如您所见,我还添加了生成的回归线和由excel计算的公式。

你需要使用梯度下降来关注回归的直觉。 当您对数据X进行完整的批量传递时,您需要将每个示例的m-loss减少到单个权重更新。 在这种情况下,这是梯度上的总和的平均值,因此除以m

接下来需要注意的是跟踪收敛并调整学习率。 就此而言,您应该始终跟踪每次迭代的成本,甚至可以绘制它。

如果你运行我的例子,返回的theta将如下所示:

Iteration 99997 | Cost: 47883.706462
Iteration 99998 | Cost: 47883.706462
Iteration 99999 | Cost: 47883.706462
[ 29.25567368   1.01108458]

这实际上非常接近由excel计算的等式(y = x + 30)。 请注意,当我们将偏差传递到第一列时,第一个θ值表示偏置权重。

下面你可以找到我对线性回归问题的梯度下降的实现。

首先,您计算梯度,如XT * (X * w - y) / N并同时使用此渐变更新当前的θ。

  • X:特征矩阵
  • y:目标值
  • w:重量/值
  • N:训练集的大小

这是python代码:

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import random

def generateSample(N, variance=100):
    X = np.matrix(range(N)).T + 1
    Y = np.matrix([random.random() * variance + i * 10 + 900 for i in range(len(X))]).T
    return X, Y

def fitModel_gradient(x, y):
    N = len(x)
    w = np.zeros((x.shape[1], 1))
    eta = 0.0001

    maxIteration = 100000
    for i in range(maxIteration):
        error = x * w - y
        gradient = x.T * error / N
        w = w - eta * gradient
    return w

def plotModel(x, y, w):
    plt.plot(x[:,1], y, "x")
    plt.plot(x[:,1], x * w, "r-")
    plt.show()

def test(N, variance, modelFunction):
    X, Y = generateSample(N, variance)
    X = np.hstack([np.matrix(np.ones(len(X))).T, X])
    w = modelFunction(X, Y)
    plotModel(X, Y, w)


test(50, 600, fitModel_gradient)
test(50, 1000, fitModel_gradient)
test(100, 200, fitModel_gradient)

TEST1 TEST2 TEST2

这些答案中的大多数都遗漏了一些关于线性回归的解释,而且代码在我看来有点复杂。

问题是,如果您有一个包含“m”个样本的数据集,每个样本称为“x^i”(n 维向量),以及一个结果向量 y(m 维向量),您可以构建以下矩阵:

梯度下降输入

现在,目标是找到“w”(n+1 维向量),它描述了线性回归的直线,“w_0”是常数项,“w_1”等等是每个维度(特征)的系数在输入样本中。 所以本质上,你想要找到“w”使得“X*w”尽可能接近“y”,即你的线预测将尽可能接近原始结果。

另请注意,我们在每个“x^i”的开头添加了一个额外的组件/维度,它只是“1”,以说明常数项。 此外,“X”只是您通过将每个结果“堆叠”为一行而获得的矩阵,因此它是一个(m x n+1)矩阵。

一旦你构建了它,梯度下降的 Python 和 Numpy 代码实际上非常简单:

def descent(X, y, learning_rate = 0.001, iters = 100):
w = np.zeros((X.shape[1], 1))
for i in range(iters):
    grad_vec = -(X.T).dot(y - X.dot(w))
    w = w - learning_rate*grad_vec
return w

瞧,它返回向量“w”。 或您的预测线的描述。

但是它是如何工作的呢? 在上面的代码中,我找到成本 function 的梯度向量(在本例中为平方差),然后我们“逆流”,找到最佳“w”给出的最小成本。 实际使用的公式在行中

grad_vec = -(X.T).dot(y - X.dot(w))

有关完整的数学解释和包括创建矩阵的代码,请参阅这篇关于如何在 Python 中实现梯度下降的帖子

编辑:为了说明,上面的代码估计了一条线,您可以使用它来进行预测。 下图显示了来自 Kaggle 的“鱼市”数据集的“学习”梯度下降线(红色)和原始数据样本(蓝色散点)的示例。

在此处输入图像描述

我知道这个问题已经回答了,但我对GD功能进行了一些更新:

  ### COST FUNCTION

def cost(theta,X,y):
     ### Evaluate half MSE (Mean square error)
     m = len(y)
     error = np.dot(X,theta) - y
     J = np.sum(error ** 2)/(2*m)
     return J

 cost(theta,X,y)



def GD(X,y,theta,alpha):

    cost_histo = [0]
    theta_histo = [0]

    # an arbitrary gradient, to pass the initial while() check
    delta = [np.repeat(1,len(X))]
    # Initial theta
    old_cost = cost(theta,X,y)

    while (np.max(np.abs(delta)) > 1e-6):
        error = np.dot(X,theta) - y
        delta = np.dot(np.transpose(X),error)/len(y)
        trial_theta = theta - alpha * delta
        trial_cost = cost(trial_theta,X,y)
        while (trial_cost >= old_cost):
            trial_theta = (theta +trial_theta)/2
            trial_cost = cost(trial_theta,X,y)
            cost_histo = cost_histo + trial_cost
            theta_histo = theta_histo +  trial_theta
        old_cost = trial_cost
        theta = trial_theta
    Intercept = theta[0] 
    Slope = theta[1]  
    return [Intercept,Slope]

res = GD(X,y,theta,alpha)

此函数在迭代过程中减少alpha,使得函数过于快速收敛,请参阅使用梯度下降(最速下降)估算线性回归,以获得R中的示例。我在Python中应用相同的逻辑。

在python中执行@ thomas-jungblut之后,我为Octave做了同样的事情。 如果您发现错误请告诉我,我将修复+更新。

数据来自包含以下行的txt文件:

1 10 1000
2 20 2500
3 25 3500
4 40 5500
5 60 6200

把它想象成一个非常粗略的特征样本[卧室数量] [mts2]和最后一列[租金价格]这是我们想要预测的。

这是Octave实现:

%
% Linear Regression with multiple variables
%

% Alpha for learning curve
alphaNum = 0.0005;

% Number of features
n = 2;

% Number of iterations for Gradient Descent algorithm
iterations = 10000

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% No need to update after here
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

DATA = load('CHANGE_WITH_DATA_FILE_PATH');

% Initial theta values
theta = ones(n + 1, 1);

% Number of training samples
m = length(DATA(:, 1));

% X with one mor column (x0 filled with '1's)
X = ones(m, 1);
for i = 1:n
  X = [X, DATA(:,i)];
endfor

% Expected data must go always in the last column  
y = DATA(:, n + 1)

function gradientDescent(x, y, theta, alphaNum, iterations)
  iterations = [];
  costs = [];

  m = length(y);

  for iteration = 1:10000
    hypothesis = x * theta;

    loss = hypothesis - y;

    % J(theta)    
    cost = sum(loss.^2) / (2 * m);

    % Save for the graphic to see if the algorithm did work
    iterations = [iterations, iteration];
    costs = [costs, cost];

    gradient = (x' * loss) / m; % /m is for the average

    theta = theta - (alphaNum * gradient);
  endfor    

  % Show final theta values
  display(theta)

  % Show J(theta) graphic evolution to check it worked, tendency must be zero
  plot(iterations, costs);

endfunction

% Execute gradient descent
gradientDescent(X, y, theta, alphaNum, iterations);

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM