繁体   English   中英

用numpy进行FFT归一化

[英]FFT normalization with numpy

刚刚开始使用numpy软件包并以简单的任务启动它来计算输入信号的FFT。 这是代码:

import numpy as np
import matplotlib.pyplot as plt

#Some constants
L = 128
p = 2
X = 20
x = np.arange(-X/2,X/2,X/L)
fft_x = np.linspace(0,128,128, True)

fwhl = 1

fwhl_y = (2/fwhl) \
*(np.log([2])/np.pi)**0.5*np.e**(-(4*np.log([2]) \
*x**2)/fwhl**2)

fft_fwhl = np.fft.fft(fwhl_y, norm='ortho')

ampl_fft_fwhl = np.abs(fft_fwhl)

plt.bar(fft_x, ampl_fft_fwhl, width=.7, color='b')

plt.show()

由于我使用指数函数,在它之前用一些常数除以pi,我期望得到傅里叶空间中的指数函数,其中FFT的常数部分总是等于1(零频率)。 但是我使用numpy的那个组件的价值更大(大约是1,13)。 在这里,我有一个幅度谱,由1 /(number_of_counts)** 0.5标准化(这是我在numpy文档中读到的)。 我无法理解什么是错的......任何人都可以帮助我吗?

谢谢!

[编辑]看起来问题已经解决了,你需要获得傅里叶积分和FFT相同的结果就是将FFT乘以步长(在我的例子中是X / L)。 至于规范化作为numpy.fft.fft(...,norm ='ortho')的选项,它仅用于保存变换的比例,否则你需要将逆FFT的结果除以样本数量。 谢谢大家的帮助!

我终于解决了我的问题。 将FFT与傅里叶积分结合起来所需要的只是将变换结果(FFT)乘以步长(在我的情况下为X / L ,FFT X / L),它通常可以工作。 在我的情况下,它有点复杂,因为我有一个额外的规则来转换函数。 我必须确定曲线下面积等于1,因为它是δ函数的模型,所以由于步长是不可改变的,我必须满足步长 (fwhl_y)= 1条件,即X / L = 1 /总和(fwhl_y)。 因此,要获得正确的结果,我必须做出以下事情:

  1. 计算FFT fft_fwhl = np.fft.fft(fwhl_y)
  2. 摆脱由于fwhl_y函数的对称性而产生的相位分量,即[-T / 2,T / 2]区间中定义的函数,其中T是周期,而np.fft.fft操作认为我的函数是在[0,T]区间中定义。 所以只获得幅度谱(这就是我需要的)我只需使用np.abs(FFT)
  3. 得到我期望的值我应该将前一步得到的结果乘以X / L,即np.abs(FFT)* X / L
  4. 我在曲线下的区域有一个额外的条件,所以它的X / L *总和(fwhl_y)= 1我终于来到np.abs(FFT)* X / L = np.abs(FFT)/ sum(fwhl_y )

希望它至少对任何人都有帮助。

这是您的问题的可能解决方案:

import numpy as np
import matplotlib.pyplot as plt
from scipy import fft
from numpy import log, pi, e

# Signal setup
Fs = 150
Ts = 1.0 / Fs
t = np.arange(0, 1, Ts)
ff = 50
fwhl = 1
y = (2 / fwhl) * (log([2]) / pi)**0.5 * e**(-(4 * log([2]) * t**2) / fwhl**2)

# Plot original signal
plt.subplot(2, 1, 1)
plt.plot(t, y, 'k-')
plt.xlabel('time')
plt.ylabel('amplitude')

# Normalized FFT
plt.subplot(2, 1, 2)
n = len(y)
k = np.arange(n)
T = n / Fs
frq = k / T
freq = frq[range(n / 2)]

Y = np.fft.fft(y) / n
Y = Y[range(n / 2)]

plt.plot(freq, abs(Y), 'r-')
plt.xlabel('freq (Hz)')
plt.ylabel('|Y(freq)|')

plt.show()

使用fwhl = 1:

在此输入图像描述

使用fwhl = 0.1:

在此输入图像描述

您可以在上面的图表中看到当fwhl接近0时指数和FFT图是如何变化的

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM