繁体   English   中英

使用scipy的solve_bvp解决BVP问题

[英]Solving a BVP with scipy's solve_bvp

我有一个3个微分方程组(从我认为的代码中可以明显看出)有3个边界条件。 我设法在MATLAB中使用循环来解决它,一点一点地改变初始猜测,如果要返回错误,则不会终止程序。 但是,在scipysolve_bvp ,我总能得到一些答案,尽管这是错误的。 所以我一直在改变我的猜测(不断改变答案)并且给出了我从实际解决方案中得到的非常接近的数字,它仍然无法正常工作。 代码是否还有其他问题,因为它不起作用? 我刚刚编辑了他们的文档代码。

import numpy as np
def fun(x, y):
    return np.vstack((3.769911184e12*np.exp(-19846/y[1])*(1-y[0]), 0.2056315191*(y[2]-y[1])+6.511664773e14*np.exp(-19846/y[1])*(1-y[0]), 1.696460033*(y[2]-y[1])))
def bc(ya, yb):
    return np.array([ya[0], ya[1]-673, yb[2]-200])
x = np.linspace(0, 1, 5)
#y = np.ones((3, x.size))
y = np.array([[1, 1, 1, 1, 1], [670, 670, 670, 670, 670], [670, 670, 670, 670, 670] ])
from scipy.integrate import solve_bvp
sol = solve_bvp(fun, bc, x, y)

实际的解决方案如下图所示。

BVP的MATLAB解决方案

显然你需要一个更好的初始猜测,否则solve_bvp使用的迭代方法可以在y[1]中创建使表达式exp(-19846/y[1])溢出的值。 当发生这种情况时,算法可能会失败。 该表达式中的溢出意味着y[1]中的某些值为负; 也就是说,解算器离杂草很远,它几乎没有机会收敛到正确的解决方案。 你会看到警告,有时函数仍会返回一个合理的解决方案,但通常它会在溢出发生时返回垃圾。

您可以通过检查sol.status来确定solve_bvp是否未能收敛。 如果它不是0,则表示失败。 sol.message包含描述状态的文本消息。

通过使用它来创建初始猜测,我能够获得Matlab解决方案:

n = 25
x = np.linspace(0, 1, n)
y = np.array([x, np.full_like(x, 673), np.linspace(800, 200, n)])

较小的n值也有效,但当n太小时,可能会出现溢出警告。

这是我修改过的脚本版本,然后是它生成的图:

import numpy as np
from scipy.integrate import solve_bvp
import matplotlib.pyplot as plt


def fun(x, y):
    t1 = np.exp(-19846/y[1])*(1 - y[0])
    dy21 = y[2] - y[1]
    return np.vstack((3.769911184e12*t1,
                      0.2056315191*dy21 + 6.511664773e14*t1,
                      1.696460033*dy21))

def bc(ya, yb):
    return np.array([ya[0], ya[1] - 673, yb[2] - 200])


n = 25
x = np.linspace(0, 1, n)
y = np.array([x, np.full_like(x, 673), np.linspace(800, 200, n)])

sol = solve_bvp(fun, bc, x, y)

if sol.status != 0:
    print("WARNING: sol.status is %d" % sol.status)
print(sol.message)

plt.subplot(2, 1, 1)
plt.plot(sol.x, sol.y[0], color='#801010', label='$y_0(x)$')
plt.grid(alpha=0.5)
plt.legend(framealpha=1, shadow=True)
plt.subplot(2, 1, 2)
plt.plot(sol.x, sol.y[1], '-', color='C0', label='$y_1(x)$')
plt.plot(sol.x, sol.y[2], '--', color='C0', label='$y_2(x)$')
plt.xlabel('$x$')
plt.grid(alpha=0.5)
plt.legend(framealpha=1, shadow=True)
plt.show()

情节

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM