繁体   English   中英

熊猫groupby()比较并计算两列

[英]Pandas groupby() compare and count two columns

我有以下熊猫数据框:

name1   name2
A       B
A       A
A       C
A       A
B       B
B       A

我想添加一列名为new的列,该列按name1每个组计数name1name2相同的频率

因此,预期的输出是以下数据帧:

name1   name2   new
A       B       2       
A       A       2
A       C       2
A       A       2
B       B       1
B       A       1

我尝试了以下操作,但出现错误:

df['new'] = df.groupby('name1').apply(lambda x: (x[x['name1'] == x['name2']].fillna(False).sum()))

TypeError:插入的列的索引与框架索引不兼容

您可以将name1name2比较,然后按name1分组并sum Trues

df['new'] = df.name2.eq(df.name1).astype(int).groupby(df.name1).transform('sum')

df
#  name1 name2  new
#0     A     B    2
#1     A     A    2
#2     A     C    2
#3     A     A    2
#4     B     B    1
#5     B     A    1

或者,如果使用apply ,则首先聚合计数,然后使用map生成new列:

cnt = df.groupby('name1').apply(lambda g: (g.name1 == g.name2).sum())
df['new'] = df.name1.map(cnt)

时间

df = pd.concat([df]*10000)

%timeit df['new'] = df.name2.eq(df.name1).astype(int).groupby(df.name1).transform('sum')
# 100 loops, best of 3: 4.85 ms per loop

%%timeit
cnt = df.groupby('name1').apply(lambda g: (g.name1 == g.name2).sum())
df['new'] = df.name1.map(cnt)
# 10 loops, best of 3: 22.1 ms per loop

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM