繁体   English   中英

多输入多输出 Model 与 Keras 功能 API

[英]Multi-input Multi-output Model with Keras Functional API

如图 1 所述,我有 3 个模型,每个模型都适用于特定领域。

这 3 个模型分别使用不同的数据集进行训练。 在此处输入图像描述

推理是顺序的:

在此处输入图像描述

由于 python 的多进程库,我尝试并行化这 3 个模型的调用,但它非常不稳定,不建议这样做。

这是我必须确保一次完成所有这些的想法:

由于 3 个模型共享一个共同的预训练模型,我想制作一个具有多个输入和多个输出的 model。

如下图所示: 在此处输入图像描述

就像在推理过程中一样,我将调用一个 model 来同时执行所有 3 个操作。

在此处输入图像描述

我看到 KERAS 的功能 API 是可能的,但我不知道该怎么做。 数据集的输入具有相同的维度。 这些是 (200,200,3) 的图片。

如果有人有共享通用结构的多输入多输出 model 的示例,我没问题。

UPADE

这是我的代码示例,但由于layers. concatenate (...) layers. concatenate (...)线,它传播EfficientNet model 未考虑的形状。

age_inputs = layers.Input(shape=(IMG_SIZE, IMG_SIZE, 3), name="age_inputs")
    
gender_inputs = layers.Input(shape=(IMG_SIZE, IMG_SIZE, 3)
                               , name="gender_inputs")
    
emotion_inputs = layers.Input(shape=(IMG_SIZE, IMG_SIZE, 3), 
                                name="emotion_inputs")


inputs = layers.concatenate([age_inputs, gender_inputs, emotion_inputs])
inputs = layers.Conv2D(3, (3, 3), activation="relu")(inputs)    
model = EfficientNetB0(include_top=False, 
                   input_tensor=inputs, weights="imagenet")
    

model.trainable = False

inputs = layers.GlobalAveragePooling2D(name="avg_pool")(model.output)
inputs = layers.BatchNormalization()(inputs)

top_dropout_rate = 0.2
inputs = layers.Dropout(top_dropout_rate, name="top_dropout")(inputs)

age_outputs = layers.Dense(1, activation="linear", 
                          name="age_pred")(inputs)
gender_outputs = layers.Dense(GENDER_NUM_CLASSES, 
                              activation="softmax", 
                              name="gender_pred")(inputs)
emotion_outputs = layers.Dense(EMOTION_NUM_CLASSES, activation="softmax", 
                             name="emotion_pred")(inputs)

model = keras.Model(inputs=[age_inputs, gender_inputs, emotion_inputs], 
              outputs =[age_outputs, gender_outputs, emotion_outputs], 
              name="EfficientNet")

optimizer = keras.optimizers.Adam(learning_rate=1e-2)
model.compile(loss={"age_pred" : "mse", 
                   "gender_pred":"categorical_crossentropy", 
                    "emotion_pred":"categorical_crossentropy"}, 
                   optimizer=optimizer, metrics=["accuracy"])

(age_train_images, age_train_labels), (age_test_images, age_test_labels) = reg_data_loader.load_data(...)
(gender_train_images, gender_train_labels), (gender_test_images, gender_test_labels) = cat_data_loader.load_data(...)
(emotion_train_images, emotion_train_labels), (emotion_test_images, emotion_test_labels) = cat_data_loader.load_data(...)

 model.fit({'age_inputs':age_train_images, 'gender_inputs':gender_train_images, 'emotion_inputs':emotion_train_images},
         {'age_pred':age_train_labels, 'gender_pred':gender_train_labels, 'emotion_pred':emotion_train_labels},
                 validation_split=0.2, 
                       epochs=5, 
                            batch_size=16)

我们可以在tf. keras tf. keras使用其出色的功能 API。 在这里,我们将引导您了解如何使用功能 API 构建具有不同类型( classificationregression )的多输出。

根据您的上一张图,您需要一个输入 model 和三个不同类型的输出。 为了演示,我们将使用手写数据集MNIST 它通常是一个10 个class 分类问题数据集。 从中,我们将另外创建2 个class 分类器(数字是even还是odd )和1 个回归部分(用于预测数字的平方,即对于 9 的图像输入,它应该给出近似的平方)。


数据集

import numpy as np 
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

(xtrain, ytrain), (_, _) = keras.datasets.mnist.load_data()

# 10 class classifier 
y_out_a = keras.utils.to_categorical(ytrain, num_classes=10) 

# 2 class classifier, even or odd 
y_out_b = keras.utils.to_categorical((ytrain % 2 == 0).astype(int), num_classes=2) 

# regression, predict square of an input digit image
y_out_c = tf.square(tf.cast(ytrain, tf.float32))

因此,我们的训练对将是xtrain[y_out_a, y_out_b, y_out_c] ,与上一张图相同。


Model大楼

让我们使用tf. keras tf. keras 请参阅下面的 model 定义。 MNIST样本是28 x 28灰度图像。 所以我们的输入就是这样设置的。 我猜您的数据集可能是 RGB,因此请相应地更改输入尺寸。

input = keras.Input(shape=(28, 28, 1), name="original_img")
x = layers.Conv2D(16, 3, activation="relu")(input)
x = layers.Conv2D(32, 3, activation="relu")(x)
x = layers.MaxPooling2D(3)(x)
x = layers.Conv2D(32, 3, activation="relu")(x)
x = layers.Conv2D(16, 3, activation="relu")(x)
x = layers.GlobalMaxPooling2D()(x)

out_a = keras.layers.Dense(10, activation='softmax', name='10cls')(x)
out_b = keras.layers.Dense(2, activation='softmax', name='2cls')(x)
out_c = keras.layers.Dense(1, activation='linear', name='1rg')(x)

encoder = keras.Model( inputs = input, outputs = [out_a, out_b, out_c], name="encoder")
# Let's plot 
keras.utils.plot_model(
    encoder
)

在此处输入图像描述

需要注意的一点是,在 model 定义期间定义out_aout_bout_c时,我们设置了它们的name变量,这非常重要。 它们的名称分别设置为'10cls''2cls''1rg' 您还可以从上图中看到这一点(最后 3 个尾巴)。


编译并运行

现在,我们可以看到为什么该name变量很重要。 为了运行 model,我们需要先用适当的loss function、 metricsoptimizer编译它。 现在,如果您知道,对于classificationregression问题, optimizer可以相同,但对于loss function 和metrics应该更改。 在我们的 model 中,它有一个多类型 output model(2 个分类和 1 个回归),我们需要为每个类型设置适当的lossmetrics 请看下面它是如何完成的。

encoder.compile(
    loss = {
        "10cls": tf.keras.losses.CategoricalCrossentropy(),
        "2cls": tf.keras.losses.CategoricalCrossentropy(),
        "1rg": tf.keras.losses.MeanSquaredError()
    },

    metrics = {
        "10cls": 'accuracy',
        "2cls": 'accuracy',
        "1rg": 'mse'
    },

    optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
)

看,我们上面model的每一个最后的output,这里用它们的name变量来表示。 我们为它们设置了适当的编译。 希望你理解这部分。 现在,是时候训练 model 了。

encoder.fit(xtrain, [y_out_a, y_out_b, y_out_c], epochs=30, verbose=2)

Epoch 1/30
1875/1875 - 6s - loss: 117.7318 - 10cls_loss: 3.2642 - 4cls_loss: 0.9040 - 1rg_loss: 113.5637 - 10cls_accuracy: 0.6057 - 4cls_accuracy: 0.8671 - 1rg_mse: 113.5637
Epoch 2/30
1875/1875 - 5s - loss: 62.1696 - 10cls_loss: 0.5151 - 4cls_loss: 0.2437 - 1rg_loss: 61.4109 - 10cls_accuracy: 0.8845 - 4cls_accuracy: 0.9480 - 1rg_mse: 61.4109
Epoch 3/30
1875/1875 - 5s - loss: 50.3159 - 10cls_loss: 0.2804 - 4cls_loss: 0.1371 - 1rg_loss: 49.8985 - 10cls_accuracy: 0.9295 - 4cls_accuracy: 0.9641 - 1rg_mse: 49.8985


Epoch 28/30
1875/1875 - 5s - loss: 15.5841 - 10cls_loss: 0.1066 - 4cls_loss: 0.0891 - 1rg_loss: 15.3884 - 10cls_accuracy: 0.9726 - 4cls_accuracy: 0.9715 - 1rg_mse: 15.3884
Epoch 29/30
1875/1875 - 5s - loss: 15.2199 - 10cls_loss: 0.1058 - 4cls_loss: 0.0859 - 1rg_loss: 15.0281 - 10cls_accuracy: 0.9736 - 4cls_accuracy: 0.9727 - 1rg_mse: 15.0281
Epoch 30/30
1875/1875 - 5s - loss: 15.2178 - 10cls_loss: 0.1136 - 4cls_loss: 0.0854 - 1rg_loss: 15.0188 - 10cls_accuracy: 0.9722 - 4cls_accuracy: 0.9736 - 1rg_mse: 15.0188
<tensorflow.python.keras.callbacks.History at 0x7ff42c18e110>

这就是最后一层的每个输出如何通过他们的关注loss function 进行优化。 仅供参考,有一件事要提,在.compile时有一个基本参数,您可能需要: loss_weights - 加权不同 model 输出的损失贡献。 查看我的其他答案。


预测/推理

让我们看看一些output。 我们现在希望这个 model 能预测3件事:(1) 是什么数字,(2) 它是偶数还是奇数,以及 (3) 它的平方值。

import matplotlib.pyplot as plt
plt.imshow(xtrain[0])

在此处输入图像描述

如果我们想快速检查我们 model 的 output 层

encoder.output

[<KerasTensor: shape=(None, 10) dtype=float32 (created by layer '10cls')>,
 <KerasTensor: shape=(None, 2) dtype=float32 (created by layer '4cls')>,
 <KerasTensor: shape=(None, 1) dtype=float32 (created by layer '1rg')>]

将此xtrain[0] (我们知道5 )传递给 model 以进行预测。

# we expand for a batch dimension: (1, 28, 28, 1)
pred10, pred2, pred1 = encoder.predict(tf.expand_dims(xtrain[0], 0))

# regression: square of the input dgit image 
pred1 
array([[22.098022]], dtype=float32)

# even or odd, surely odd 
pred2.argmax()
0

# which number, surely 5
pred10.argmax()
5

更新

根据您的评论,我们也可以扩展上述 model 以进行多输入。 我们需要改变一些事情。 为了演示,我们将使用xtrain数据集的mnistxtest样本到 model 作为多输入。

(xtrain, ytrain), (xtest, _) = keras.datasets.mnist.load_data()

xtrain = xtrain[:10000] # both input sample should be same number 
ytrain = ytrain[:10000] # both input sample should be same number

y_out_a = keras.utils.to_categorical(ytrain, num_classes=10)
y_out_b = keras.utils.to_categorical((ytrain % 2 == 0).astype(int), num_classes=2)
y_out_c = tf.square(tf.cast(ytrain, tf.float32))

print(xtrain.shape, xtest.shape) 
print(y_out_a.shape, y_out_b.shape, y_out_c.shape)
# (10000, 28, 28) (10000, 28, 28)
# (10000, 10) (10000, 2) (10000,)

接下来,我们需要对上面的model的部分部分进行修改,使其采用多输入 接下来,如果您现在是 plot,您将看到新图表。

input0 = keras.Input(shape=(28, 28, 1), name="img2")
input1 = keras.Input(shape=(28, 28, 1), name="img1")
concate_input = layers.Concatenate()([input0, input1])

x = layers.Conv2D(16, 3, activation="relu")(concate_input)
...
...
...
# multi-input , multi-output
encoder = keras.Model( inputs = [input0, input1], 
                       outputs = [out_a, out_b, out_c], name="encoder")

在此处输入图像描述

现在,我们可以如下训练 model

# multi-input, multi-output
encoder.fit([xtrain, xtest], [y_out_a, y_out_b, y_out_c], 
             epochs=30, batch_size = 256, verbose=2)

Epoch 1/30
40/40 - 1s - loss: 66.9731 - 10cls_loss: 0.9619 - 2cls_loss: 0.4412 - 1rg_loss: 65.5699 - 10cls_accuracy: 0.7627 - 2cls_accuracy: 0.8815 - 1rg_mse: 65.5699
Epoch 2/30
40/40 - 0s - loss: 60.5408 - 10cls_loss: 0.8959 - 2cls_loss: 0.3850 - 1rg_loss: 59.2598 - 10cls_accuracy: 0.7794 - 2cls_accuracy: 0.8928 - 1rg_mse: 59.2598
Epoch 3/30
40/40 - 0s - loss: 57.3067 - 10cls_loss: 0.8586 - 2cls_loss: 0.3669 - 1rg_loss: 56.0813 - 10cls_accuracy: 0.7856 - 2cls_accuracy: 0.8951 - 1rg_mse: 56.0813
...
...
Epoch 28/30
40/40 - 0s - loss: 29.1198 - 10cls_loss: 0.4775 - 2cls_loss: 0.2573 - 1rg_loss: 28.3849 - 10cls_accuracy: 0.8616 - 2cls_accuracy: 0.9131 - 1rg_mse: 28.3849
Epoch 29/30
40/40 - 0s - loss: 27.5318 - 10cls_loss: 0.4696 - 2cls_loss: 0.2518 - 1rg_loss: 26.8104 - 10cls_accuracy: 0.8645 - 2cls_accuracy: 0.9142 - 1rg_mse: 26.8104
Epoch 30/30
40/40 - 0s - loss: 27.1581 - 10cls_loss: 0.4620 - 2cls_loss: 0.2446 - 1rg_loss: 26.4515 - 10cls_accuracy: 0.8664 - 2cls_accuracy: 0.9158 - 1rg_mse: 26.4515

现在,我们可以测试多输入 model 并从中获得多输出。

pred10, pred2, pred1 = encoder.predict(
    [
         tf.expand_dims(xtrain[0], 0),
         tf.expand_dims(xtrain[0], 0)
    ]
)

# regression part 
pred1
array([[25.13295]], dtype=float32)

# even or odd 
pred2.argmax()
0

# what digit 
pred10.argmax()
5

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM