簡體   English   中英

有沒有一種簡單的方法/算法來匹配2個2D點的雲?

[英]Is there an easy way/algorithm to match 2 clouds of 2D points?

我想知道是否有一種簡單的方法來匹配(注冊)2個點的2個雲。

假設我有一個由點表示的對象和一個雜亂的第二個圖像,其中包含對象點和噪聲(噪聲以一種無用的點的方式)。

基本上,對象可以是2d旋轉以及翻譯和縮放。

我知道有ICP算法,但我認為由於噪音很大,這​​不是一個好方法。

我希望你明白我的意思。 請詢問(確定是)任何事情都不清楚。

干杯

這是查找平移和旋轉的函數。 縮放,加權點和RANSAC的推廣是直截了當的。 我使用openCV庫進行可視化和SVD。 以下功能結合了數據生成,單元測試和實際解決方案。

 // rotation and translation in 2D from point correspondences
 void rigidTransform2D(const int N) {

// Algorithm: http://igl.ethz.ch/projects/ARAP/svd_rot.pdf

const bool debug = false;      // print more debug info
const bool add_noise = true; // add noise to imput and output
srand(time(NULL));           // randomize each time

/*********************************
 * Creat data with some noise
 **********************************/

// Simulated transformation
Point2f T(1.0f, -2.0f);
float a = 30.0; // [-180, 180], see atan2(y, x)
float noise_level = 0.1f;
cout<<"True parameters: rot = "<<a<<"deg., T = "<<T<<
        "; noise level = "<<noise_level<<endl;

// noise
vector<Point2f> noise_src(N), noise_dst(N);
for (int i=0; i<N; i++) {
    noise_src[i] = Point2f(randf(noise_level), randf(noise_level));
    noise_dst[i] = Point2f(randf(noise_level), randf(noise_level));
}

// create data with noise
vector<Point2f> src(N), dst(N);
float Rdata = 10.0f; // radius of data
float cosa = cos(a*DEG2RAD);
float sina = sin(a*DEG2RAD);
for (int i=0; i<N; i++) {

    // src
    float x1 = randf(Rdata);
    float y1 = randf(Rdata);
    src[i] = Point2f(x1,y1);
    if (add_noise)
        src[i] += noise_src[i];

    // dst
    float x2 = x1*cosa - y1*sina;
    float y2 = x1*sina + y1*cosa;
    dst[i] = Point2f(x2,y2) + T;
    if (add_noise)
        dst[i] += noise_dst[i];

    if (debug)
        cout<<i<<": "<<src[i]<<"---"<<dst[i]<<endl;
}

// Calculate data centroids
Scalar centroid_src = mean(src);
Scalar centroid_dst = mean(dst);
Point2f center_src(centroid_src[0], centroid_src[1]);
Point2f center_dst(centroid_dst[0], centroid_dst[1]);
if (debug)
    cout<<"Centers: "<<center_src<<", "<<center_dst<<endl;

/*********************************
 * Visualize data
 **********************************/

// Visualization
namedWindow("data", 1);
float w = 400, h = 400;
Mat Mdata(w, h, CV_8UC3); Mdata = Scalar(0);
Point2f center_img(w/2, h/2);

float scl = 0.4*min(w/Rdata, h/Rdata); // compensate for noise
scl/=sqrt(2); // compensate for rotation effect
Point2f dT = (center_src+center_dst)*0.5; // compensate for translation

for (int i=0; i<N; i++) {
    Point2f p1(scl*(src[i] - dT));
    Point2f p2(scl*(dst[i] - dT));
    // invert Y axis
    p1.y = -p1.y; p2.y = -p2.y;
    // add image center
    p1+=center_img; p2+=center_img;
    circle(Mdata, p1, 1, Scalar(0, 255, 0));
    circle(Mdata, p2, 1, Scalar(0, 0, 255));
    line(Mdata, p1, p2, Scalar(100, 100, 100));

}

/*********************************
 * Get 2D rotation and translation
 **********************************/

markTime();

// subtract centroids from data
for (int i=0; i<N; i++) {
    src[i] -= center_src;
    dst[i] -= center_dst;
}

// compute a covariance matrix
float Cxx = 0.0, Cxy = 0.0, Cyx = 0.0, Cyy = 0.0;
for (int i=0; i<N; i++) {
    Cxx += src[i].x*dst[i].x;
    Cxy += src[i].x*dst[i].y;
    Cyx += src[i].y*dst[i].x;
    Cyy += src[i].y*dst[i].y;
}
Mat Mcov = (Mat_<float>(2, 2)<<Cxx, Cxy, Cyx, Cyy);
if (debug)
    cout<<"Covariance Matrix "<<Mcov<<endl;

// SVD
cv::SVD svd;
svd = SVD(Mcov, SVD::FULL_UV);
if (debug) {
    cout<<"U = "<<svd.u<<endl;
    cout<<"W = "<<svd.w<<endl;
    cout<<"V transposed = "<<svd.vt<<endl;
}

// rotation = V*Ut
Mat V = svd.vt.t();
Mat Ut = svd.u.t();
float det_VUt = determinant(V*Ut);
Mat W = (Mat_<float>(2, 2)<<1.0, 0.0, 0.0, det_VUt);
float rot[4];
Mat R_est(2, 2, CV_32F, rot);
R_est = V*W*Ut;
if (debug)
    cout<<"Rotation matrix: "<<R_est<<endl;

float cos_est = rot[0];
float sin_est = rot[2];
float ang = atan2(sin_est, cos_est);

// translation = mean_dst - R*mean_src
Point2f center_srcRot = Point2f(
        cos_est*center_src.x - sin_est*center_src.y,
        sin_est*center_src.x + cos_est*center_src.y);
Point2f T_est = center_dst - center_srcRot;

// RMSE
double RMSE = 0.0;
for (int i=0; i<N; i++) {
    Point2f dst_est(
            cos_est*src[i].x - sin_est*src[i].y,
            sin_est*src[i].x + cos_est*src[i].y);
    RMSE += SQR(dst[i].x - dst_est.x) + SQR(dst[i].y - dst_est.y);
}
if (N>0)
    RMSE = sqrt(RMSE/N);

// Final estimate msg
cout<<"Estimate = "<<ang*RAD2DEG<<"deg., T = "<<T_est<<"; RMSE = "<<RMSE<<endl;

// show image
printTime(1);
imshow("data", Mdata);
waitKey(-1);

return;
} // rigidTransform2D()

// --------------------------- 3DOF

// calculates squared error from two point mapping; assumes rotation around Origin.
inline float sqErr_3Dof(Point2f p1, Point2f p2,
        float cos_alpha, float sin_alpha, Point2f T) {

    float x2_est = T.x + cos_alpha * p1.x - sin_alpha * p1.y;
    float y2_est = T.y + sin_alpha * p1.x + cos_alpha * p1.y;
    Point2f p2_est(x2_est, y2_est);
    Point2f dp = p2_est-p2;
    float sq_er = dp.dot(dp); // squared distance

    //cout<<dp<<endl;
    return sq_er;
}

// calculate RMSE for point-to-point metrics
float RMSE_3Dof(const vector<Point2f>& src, const vector<Point2f>& dst,
        const float* param, const bool* inliers, const Point2f center) {

    const bool all_inliers = (inliers==NULL); // handy when we run QUADRTATIC will all inliers
    unsigned int n = src.size();
    assert(n>0 && n==dst.size());

    float ang_rad = param[0];
    Point2f T(param[1], param[2]);
    float cos_alpha = cos(ang_rad);
    float sin_alpha = sin(ang_rad);

    double RMSE = 0.0;
    int ninliers = 0;
    for (unsigned int i=0; i<n; i++) {
        if (all_inliers || inliers[i]) {
            RMSE += sqErr_3Dof(src[i]-center, dst[i]-center, cos_alpha, sin_alpha, T);
            ninliers++;
        }
    }

    //cout<<"RMSE = "<<RMSE<<endl;
    if (ninliers>0)
        return sqrt(RMSE/ninliers);
    else
        return LARGE_NUMBER;
}

// Sets inliers and returns their count
inline int setInliers3Dof(const vector<Point2f>& src, const vector <Point2f>& dst,
        bool* inliers,
        const float* param,
        const float max_er,
        const Point2f center) {

    float ang_rad = param[0];
    Point2f T(param[1], param[2]);

    // set inliers
    unsigned int ninliers = 0;
    unsigned int n = src.size();
    assert(n>0 && n==dst.size());

    float cos_ang = cos(ang_rad);
    float sin_ang = sin(ang_rad);
    float max_sqErr = max_er*max_er; // comparing squared values

    if (inliers==NULL) {

        // just get the number of inliers (e.g. after QUADRATIC fit only)
        for (unsigned int i=0; i<n; i++) {

            float sqErr = sqErr_3Dof(src[i]-center, dst[i]-center, cos_ang, sin_ang, T);
            if ( sqErr < max_sqErr)
                ninliers++;
        }
    } else  {

        // get the number of inliers and set them (e.g. for RANSAC)
        for (unsigned int i=0; i<n; i++) {

            float sqErr = sqErr_3Dof(src[i]-center, dst[i]-center, cos_ang, sin_ang, T);
            if ( sqErr < max_sqErr) {
                inliers[i] = 1;
                ninliers++;
            } else {
                inliers[i] = 0;
            }
        }
    }

    return ninliers;
}

// fits 3DOF (rotation and translation in 2D) with least squares.
float fit3DofQUADRATICold(const vector<Point2f>& src, const vector<Point2f>& dst,
        float* param, const bool* inliers, const Point2f center) {

    const bool all_inliers = (inliers==NULL); // handy when we run QUADRTATIC will all inliers
    unsigned int n = src.size();
    assert(dst.size() == n);

    // count inliers
    int ninliers;
    if (all_inliers) {
        ninliers = n;
    } else {
        ninliers = 0;
        for (unsigned int i=0; i<n; i++){
            if (inliers[i])
                ninliers++;
        }
    }

    // under-dermined system
    if (ninliers<2) {
        //      param[0] = 0.0f; // ?
        //      param[1] = 0.0f;
        //      param[2] = 0.0f;
        return LARGE_NUMBER;
    }

    /*
     * x1*cosx(a)-y1*sin(a) + Tx = X1
     * x1*sin(a)+y1*cos(a) + Ty = Y1
     *
     * approximation for small angle a (radians) sin(a)=a, cos(a)=1;
     *
     * x1*1 - y1*a + Tx = X1
     * x1*a + y1*1 + Ty = Y1
     *
     * in matrix form M1*h=M2
     *
     *  2n x 4       4 x 1   2n x 1
     *
     * -y1 1 0 x1  *   a   =  X1
     *  x1 0 1 y1      Tx     Y1
     *                 Ty
     *                 1=Z
     *  ----------------------------
     *  src1         res      src2
     */

    //  4 x 1
    float res_ar[4]; // alpha, Tx, Ty, 1
    Mat res(4, 1, CV_32F, res_ar); // 4 x 1

    // 2n x 4
    Mat src1(2*ninliers, 4, CV_32F); // 2n x 4

    // 2n x 1
    Mat src2(2*ninliers, 1, CV_32F); // 2n x 1: [X1, Y1, X2, Y2, X3, Y3]'

    for (unsigned int i=0, row_cnt = 0; i<n; i++) {

        // use inliers only
        if (all_inliers || inliers[i]) {

            float x = src[i].x - center.x;
            float y = src[i].y - center.y;

            // first row

            // src1
            float* rowPtr = src1.ptr<float>(row_cnt);
            rowPtr[0] = -y;
            rowPtr[1] = 1.0f;
            rowPtr[2] = 0.0f;
            rowPtr[3] = x;

            // src2
            src2.at<float> (0, row_cnt) = dst[i].x - center.x;

            // second row
            row_cnt++;

            // src1
            rowPtr = src1.ptr<float>(row_cnt);
            rowPtr[0] = x;
            rowPtr[1] = 0.0f;
            rowPtr[2] = 1.0f;
            rowPtr[3] = y;

            // src2
            src2.at<float> (0, row_cnt) = dst[i].y - center.y;
        }
    }

    cv::solve(src1, src2, res, DECOMP_SVD);

    // estimators
    float alpha_est;
    Point2f T_est;

    // original
    alpha_est = res.at<float>(0, 0);
    T_est = Point2f(res.at<float>(1, 0), res.at<float>(2, 0));

    float Z = res.at<float>(3, 0);
    if (abs(Z-1.0) > 0.1) {
        //cout<<"Bad Z in fit3DOF(), Z should be close to 1.0 = "<<Z<<endl;
        //return LARGE_NUMBER;
    }
    param[0] = alpha_est; // rad
    param[1] = T_est.x;
    param[2] = T_est.y;

    // calculate RMSE
    float RMSE = RMSE_3Dof(src, dst, param, inliers, center);
    return RMSE;
} // fit3DofQUADRATICOLd()

// fits 3DOF (rotation and translation in 2D) with least squares.
float fit3DofQUADRATIC(const vector<Point2f>& src_, const vector<Point2f>& dst_,
        float* param, const bool* inliers, const Point2f center) {

    const bool debug = false;                   // print more debug info
    const bool all_inliers = (inliers==NULL);   // handy when we run QUADRTATIC will all inliers
    assert(dst_.size() == src_.size());
    int N = src_.size();

    // collect inliers
    vector<Point2f> src, dst;
    int ninliers;
    if (all_inliers) {
        ninliers = N;
        src = src_; // copy constructor
        dst = dst_;
    } else {
        ninliers = 0;
        for (int i=0; i<N; i++){
            if (inliers[i]) {
                ninliers++;
                src.push_back(src_[i]);
                dst.push_back(dst_[i]);
            }
        }
    }
    if (ninliers<2) {
        param[0] = 0.0f; // default return when there is not enough points
        param[1] = 0.0f;
        param[2] = 0.0f;
        return LARGE_NUMBER;
    }

    /* Algorithm: Least-Square Rigid Motion Using SVD by Olga Sorkine
     * http://igl.ethz.ch/projects/ARAP/svd_rot.pdf
     *
     * Subtract centroids, calculate SVD(cov),
     * R = V[1, det(VU')]'U', T = mean_q-R*mean_p
     */

    // Calculate data centroids
    Scalar centroid_src = mean(src);
    Scalar centroid_dst = mean(dst);
    Point2f center_src(centroid_src[0], centroid_src[1]);
    Point2f center_dst(centroid_dst[0], centroid_dst[1]);
    if (debug)
        cout<<"Centers: "<<center_src<<", "<<center_dst<<endl;

    // subtract centroids from data
    for (int i=0; i<ninliers; i++) {
        src[i] -= center_src;
        dst[i] -= center_dst;
    }

    // compute a covariance matrix
    float Cxx = 0.0, Cxy = 0.0, Cyx = 0.0, Cyy = 0.0;
    for (int i=0; i<ninliers; i++) {
        Cxx += src[i].x*dst[i].x;
        Cxy += src[i].x*dst[i].y;
        Cyx += src[i].y*dst[i].x;
        Cyy += src[i].y*dst[i].y;
    }
    Mat Mcov = (Mat_<float>(2, 2)<<Cxx, Cxy, Cyx, Cyy);
    Mcov /= (ninliers-1);
    if (debug)
        cout<<"Covariance-like Matrix "<<Mcov<<endl;

    // SVD of covariance
    cv::SVD svd;
    svd = SVD(Mcov, SVD::FULL_UV);
    if (debug) {
        cout<<"U = "<<svd.u<<endl;
        cout<<"W = "<<svd.w<<endl;
        cout<<"V transposed = "<<svd.vt<<endl;
    }

    // rotation (V*Ut)
    Mat V = svd.vt.t();
    Mat Ut = svd.u.t();
    float det_VUt = determinant(V*Ut);
    Mat W = (Mat_<float>(2, 2)<<1.0, 0.0, 0.0, det_VUt);
    float rot[4];
    Mat R_est(2, 2, CV_32F, rot);
    R_est = V*W*Ut;
    if (debug)
        cout<<"Rotation matrix: "<<R_est<<endl;

    float cos_est = rot[0];
    float sin_est = rot[2];
    float ang = atan2(sin_est, cos_est);

    // translation (mean_dst - R*mean_src)
    Point2f center_srcRot = Point2f(
            cos_est*center_src.x - sin_est*center_src.y,
            sin_est*center_src.x + cos_est*center_src.y);
    Point2f T_est = center_dst - center_srcRot;

    // Final estimate msg
    if (debug)
        cout<<"Estimate = "<<ang*RAD2DEG<<"deg., T = "<<T_est<<endl;

    param[0] = ang; // rad
    param[1] = T_est.x;
    param[2] = T_est.y;

    // calculate RMSE
    float RMSE = RMSE_3Dof(src_, dst_, param, inliers, center);
    return RMSE;
} // fit3DofQUADRATIC()

// RANSAC fit in 3DOF: 1D rot and 2D translation (maximizes the number of inliers)
// NOTE: no data normalization is currently performed
float fit3DofRANSAC(const vector<Point2f>& src, const vector<Point2f>& dst,
        float* best_param,  bool* inliers,
        const Point2f center ,
        const float inlierMaxEr,
        const int niter) {

    const int ITERATION_TO_SETTLE = 2;    // iterations to settle inliers and param
    const float INLIERS_RATIO_OK = 0.95f;  // stopping criterion

    // size of data vector
    unsigned int N = src.size();
    assert(N==dst.size());

    // unrealistic case
    if(N<2) {
        best_param[0] = 0.0f; // ?
        best_param[1] = 0.0f;
        best_param[2] = 0.0f;
        return LARGE_NUMBER;
    }

    unsigned int ninliers;                 // current number of inliers
    unsigned int best_ninliers = 0;     // number of inliers
    float best_rmse = LARGE_NUMBER;         // error
    float cur_rmse;                         // current distance error
    float param[3];                         // rad, Tx, Ty
    vector <Point2f> src_2pt(2), dst_2pt(2);// min set of 2 points (1 correspondence generates 2 equations)
    srand (time(NULL));

    // iterations
    for (int iter = 0; iter<niter; iter++) {

#ifdef DEBUG_RANSAC
        cout<<"iteration "<<iter<<": ";
#endif

        // 1. Select a random set of 2 points (not obligatory inliers but valid)
        int i1, i2;
        i1 = rand() % N; // [0, N[
        i2 = i1;
        while (i2==i1) {
            i2 = rand() % N;
        }
        src_2pt[0] = src[i1]; // corresponding points
        src_2pt[1] = src[i2];
        dst_2pt[0] = dst[i1];
        dst_2pt[1] = dst[i2];
        bool two_inliers[] = {true, true};

        // 2. Quadratic fit for 2 points
        cur_rmse = fit3DofQUADRATIC(src_2pt, dst_2pt, param, two_inliers, center);

        // 3. Recalculate to settle params and inliers using a larger set
        for (int iter2=0; iter2<ITERATION_TO_SETTLE; iter2++) {
            ninliers = setInliers3Dof(src, dst, inliers, param, inlierMaxEr, center);   // changes inliers
            cur_rmse = fit3DofQUADRATIC(src, dst, param, inliers, center);              // changes cur_param
        }

        // potential ill-condition or large error
        if (ninliers<2) {
#ifdef DEBUG_RANSAC
            cout<<" !!! less than 2 inliers "<<endl;
#endif
            continue;
        } else {
#ifdef DEBUG_RANSAC
            cout<<" "<<ninliers<<" inliers; ";
#endif
        }


#ifdef DEBUG_RANSAC
        cout<<"; recalculate: RMSE = "<<cur_rmse<<", "<<ninliers <<" inliers";
#endif


        // 4. found a better solution?
        if (ninliers > best_ninliers) {
            best_ninliers = ninliers;
            best_param[0] = param[0];
            best_param[1] = param[1];
            best_param[2] = param[2];
            best_rmse = cur_rmse;


#ifdef DEBUG_RANSAC
            cout<<" --- Solution improved: "<<
                    best_param[0]<<", "<<best_param[1]<<", "<<param[2]<<endl;
#endif
            // exit condition
            float inlier_ratio = (float)best_ninliers/N;
            if (inlier_ratio > INLIERS_RATIO_OK) {
#ifdef DEBUG_RANSAC
                cout<<"Breaking early after "<< iter+1<<
                        " iterations; inlier ratio = "<<inlier_ratio<<endl;
#endif
                break;
            }
        } else {
#ifdef DEBUG_RANSAC
            cout<<endl;
#endif
        }


    } // iterations

    // 5. recreate inliers for the best parameters
    ninliers = setInliers3Dof(src, dst, inliers, best_param, inlierMaxEr, center);

    return best_rmse;
} // fit3DofRANSAC()

讓我首先確保我正確地解釋你的問題。 您有兩組2D點,其中一組包含對應於某些感興趣對象的所有“好”點,其中一組包含添加了噪聲點的仿射變換下的那些點。 對?

如果這是正確的,那么有一種相當可靠和有效的方法來拒絕噪聲點並確定您感興趣的點之間的轉換。 通常用於拒絕噪聲點(“異常值”)的算法稱為RANSAC ,用於確定變換的算法可以采用多種形式,但是現有技術的最新狀態稱為五點算法,可以在這里找到 - 可以在這里找到MATLAB實現。

不幸的是,我不知道兩者結合的成熟實施; 您可能需要自己做一些工作來實現RANSAC並將其與五點算法集成。

編輯:

實際上,OpenCV的實現對你的任務來說是過度的(意味着它可以工作,但需要的時間比必要的多),但是它已經准備好開箱即用。 感興趣的函數稱為cv :: findFundamentalMat

我相信你正在尋找像David Lowe的SIFT (尺度不變特征變換)這樣的東西。 其他選擇是SURF (SIFT受專利保護)。 OpenCV計算機庫提供了SURF實現

我會嘗試使用距離幾何(http://en.wikipedia.org/wiki/Distance_geometry)

通過將距離與某個半徑內的所有鄰居相加,為每個點生成一個標量。 雖然不完美,但這對於每一點都是很好的鑒別器。

然后將所有標量放在一個映射中,該映射允許通過標量(+)加上/減去一些delta來檢索點(p)
M(s + delta)= p(例如KD樹)(http://en.wikipedia.org/wiki/Kd-tree)

將所有2D點的參考集放在地圖中

在另一個(測試)2D點集上:
foreach測試縮放(特別是如果你很清楚典型的縮放值是什么)
...用S表示每個點
...重新計算測試點集的標量
......對於測試集中的每個點P(或者可能是更快的方法的樣本)
.........某些delta內參考標量圖中的查找點
.........如果沒有找到映射,則丟棄P.
.........其他事先發現P'點
............檢查P的鄰居並查看他們是否在某個增量內的參考地圖中有相應的標量(即參考點具有大約相同值的鄰居)
.........如果測試的所有點都在參考集中有映射,您已經找到了測試點P到參考點P'的映射 - >測試點到參考點的記錄映射..... .discard縮放,如果沒有記錄映射

請注意,這在幾個不同的地方是平行的

根據我多年前做過的研究,這是我的頭腦。 它缺乏精細的細節,但總體思路很明確:在噪聲(測試)圖中找到與其最近鄰居的距離與參考集大致相同的點。 噪聲圖必須測量距離,允許誤差較大,噪聲圖較少。

該算法適用於沒有噪聲的圖形。

編輯 :算法的細化不需要查看不同的縮放。 計算每個點的標量時,請改用相對距離度量。 這將是變換的不變量

從C ++開始,您可以使用ITK進行圖像注冊。 它包括許多注冊功能,可在存在噪音的情況下工作。

KLT(Kanade Lucas Tomasi)功能跟蹤器對跟蹤功能進行仿射一致性檢查 仿射一致性檢查考慮了平移,旋轉和縮放。 我不知道它對你有幫助,因為你不能直接使用函數(它計算矩形區域的仿射變換)。 但也許你可以從文檔和源代碼中學習 ,如何計算仿射變換並使其適應你的問題(點雲而不是矩形區域)。

你想要Denton-Beveridge點匹配算法。 下面鏈接的頁面底部的源代碼,還有一篇文章解釋了算法以及為什么Ransac是這個問題的錯誤選擇。

http://jasondenton.me/pntmatch.html

暫無
暫無

聲明:本站的技術帖子網頁,遵循CC BY-SA 4.0協議,如果您需要轉載,請注明本站網址或者原文地址。任何問題請咨詢:yoyou2525@163.com.

 
粵ICP備18138465號  © 2020-2024 STACKOOM.COM