简体   繁体   中英

In ARCore using java, how can I draw a 3D triangle/line in my world

Completely new to OpenGL/ArCore and having some issues. I would like to simply draw a triangle near an anchor but can't figure out how to do this. Meanwhile I would also like to draw a line of which I have an origin point & a direction vector.

I am using google's ARCore sample project as a base. I can draw a 2D Triangle over this screen using their OpenGL tutorial with the following Triangle class:

private final String vertexShaderCode =
        // This matrix member variable provides a hook to manipulate
        // the coordinates of the objects that use this vertex shader
        "uniform mat4 uMVPMatrix;" +
        "attribute vec4 vPosition;" +
        "void main() {" +
        // the matrix must be included as a modifier of gl_Position
        // Note that the uMVPMatrix factor *must be first* in order
        // for the matrix multiplication product to be correct.
        "  gl_Position = uMVPMatrix * vPosition;" +
        "}";

private final String fragmentShaderCode =
        "precision mediump float;" +
        "uniform vec4 vColor;" +
        "void main() {" +
        "  gl_FragColor = vColor;" +
        "}";

private final FloatBuffer vertexBuffer;
private final int mProgram;
private int mPositionHandle;
private int mColorHandle;
private int mMVPMatrixHandle;

// number of coordinates per vertex in this array
static final int COORDS_PER_VERTEX = 3;
static float triangleCoords[] = {
        // in counterclockwise order:
        0.0f,  0.622008459f, 0.0f,   // top
       -0.5f, -0.311004243f, 0.0f,   // bottom left
        0.5f, -0.311004243f, 0.0f    // bottom right
};
private final int vertexCount = triangleCoords.length / COORDS_PER_VERTEX;
private final int vertexStride = COORDS_PER_VERTEX * 4; // 4 bytes per vertex

float color[] = { 0.63671875f, 0.76953125f, 0.22265625f, 0.0f };

/**
 * Sets up the drawing object data for use in an OpenGL ES context.
 */
public Triangle() {
    // initialize vertex byte buffer for shape coordinates
    ByteBuffer bb = ByteBuffer.allocateDirect(
            // (number of coordinate values * 4 bytes per float)
            triangleCoords.length * 4);
    // use the device hardware's native byte order
    bb.order(ByteOrder.nativeOrder());

    // create a floating point buffer from the ByteBuffer
    vertexBuffer = bb.asFloatBuffer();
    // add the coordinates to the FloatBuffer
    vertexBuffer.put(triangleCoords);
    // set the buffer to read the first coordinate
    vertexBuffer.position(0);

    // prepare shaders and OpenGL program
    int vertexShader = MyGLRenderer.loadShader(
            GLES20.GL_VERTEX_SHADER, vertexShaderCode);
    int fragmentShader = MyGLRenderer.loadShader(
            GLES20.GL_FRAGMENT_SHADER, fragmentShaderCode);

    mProgram = GLES20.glCreateProgram();             // create empty OpenGL Program
    GLES20.glAttachShader(mProgram, vertexShader);   // add the vertex shader to program
    GLES20.glAttachShader(mProgram, fragmentShader); // add the fragment shader to program
    GLES20.glLinkProgram(mProgram);                  // create OpenGL program executables

}

/**
 * Encapsulates the OpenGL ES instructions for drawing this shape.
 *
 * @param mvpMatrix - The Model View Project matrix in which to draw
 * this shape.
 */
public void draw(float[] mvpMatrix) {
    // Add program to OpenGL environment
    GLES20.glUseProgram(mProgram);

    // get handle to vertex shader's vPosition member
    mPositionHandle = GLES20.glGetAttribLocation(mProgram, "vPosition");

    // Enable a handle to the triangle vertices
    GLES20.glEnableVertexAttribArray(mPositionHandle);

    // Prepare the triangle coordinate data
    GLES20.glVertexAttribPointer(
            mPositionHandle, COORDS_PER_VERTEX,
            GLES20.GL_FLOAT, false,
            vertexStride, vertexBuffer);

    // get handle to fragment shader's vColor member
    mColorHandle = GLES20.glGetUniformLocation(mProgram, "vColor");

    // Set color for drawing the triangle
    GLES20.glUniform4fv(mColorHandle, 1, color, 0);

    // get handle to shape's transformation matrix
    mMVPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uMVPMatrix");
    MyGLRenderer.checkGlError("glGetUniformLocation");

    // Apply the projection and view transformation
    GLES20.glUniformMatrix4fv(mMVPMatrixHandle, 1, false, mvpMatrix, 0);
    MyGLRenderer.checkGlError("glUniformMatrix4fv");

    // Draw the triangle
    GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, vertexCount);

    // Disable vertex array
    GLES20.glDisableVertexAttribArray(mPositionHandle);
}

Changing the z-values inside the trianglecoords variable doesn't affect drawing the triangle at all so i'm confused as to how to proceed.

If you need to know why, I'm trying to do some ray-triangle intersection testing; it's not working out very well and would like to test how it works with just one triangle. I'm breaking my head over it and it's annoying me greatly how complicated such a seemingly simple action is.

Thanks in advance!

edit I'm aware that GL is steep to get into for ARCore. My assignment involves playing around with ARCore however, and since I am also using GL for a personal project I really want to get to know it, and not use Unity/Unreal.

You can mimic a line with ShapeFactory.makeCylinder by setting correct parameters. However, this would not be in OpenGL but certainly with less overhead for a simple line.

My approach would be to get the start and end word coodrinate points for the two line ends. Then calculate the direction and distance of the line, use the distance as length of the cylinder. Position the line in the middle of distance and then rotate it accordingly to fit the actual start and end point coodrinates.

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM