繁体   English   中英

使用深度学习来预测序列的子序列

[英]Using Deep Learning to Predict Subsequence from Sequence

我有一个看起来像这样的数据:

在此输入图像描述

它可以在这里查看并已包含在下面的代码中。 实际上我有~7000个样本(行),也可以下载

任务给予抗原,预测相应的表位。 因此表位始终是抗原的精确子串。 这相当于序列到序列学习 这是我在Keras下的Recurrent Neural Network上运行的代码。 它是根据例子建模的。

我的问题是:

  1. RNN,LSTM或GRU可用于预测上面提到的子序列吗?
  2. 如何提高代码的准确性?
  3. 如何修改我的代码以便它可以更快地运行?

这是我的运行代码,它给出了非常差的准确度分数。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function
import sys
import json
import pandas as pd
from keras.models import Sequential
from keras.engine.training import slice_X
from keras.layers.core import Activation,  RepeatVector, Dense
from keras.layers import recurrent, TimeDistributed
import numpy as np
from six.moves import range

class CharacterTable(object):
    '''
    Given a set of characters:
    + Encode them to a one hot integer representation
    + Decode the one hot integer representation to their character output
    + Decode a vector of probabilties to their character output
    '''
    def __init__(self, chars, maxlen):
        self.chars = sorted(set(chars))
        self.char_indices = dict((c, i) for i, c in enumerate(self.chars))
        self.indices_char = dict((i, c) for i, c in enumerate(self.chars))
        self.maxlen = maxlen

    def encode(self, C, maxlen=None):
        maxlen = maxlen if maxlen else self.maxlen
        X = np.zeros((maxlen, len(self.chars)))
        for i, c in enumerate(C):
            X[i, self.char_indices[c]] = 1
        return X

    def decode(self, X, calc_argmax=True):
        if calc_argmax:
            X = X.argmax(axis=-1)
        return ''.join(self.indices_char[x] for x in X)

class colors:
    ok = '\033[92m'
    fail = '\033[91m'
    close = '\033[0m'

INVERT = True
HIDDEN_SIZE = 128
BATCH_SIZE = 64
LAYERS = 3
# Try replacing GRU, or SimpleRNN
RNN = recurrent.LSTM


def main():
    """
    Epitope_core = answers
    Antigen      = questions
    """

    epi_antigen_df = pd.io.parsers.read_table("http://dpaste.com/2PZ9WH6.txt")
    antigens = epi_antigen_df["Antigen"].tolist()
    epitopes = epi_antigen_df["Epitope Core"].tolist()

    if INVERT:
        antigens = [ x[::-1] for x in antigens]

    allchars = "".join(antigens+epitopes)
    allchars = list(set(allchars))
    aa_chars =  "".join(allchars)
    sys.stderr.write(aa_chars + "\n")

    max_antigen_len = len(max(antigens, key=len))
    max_epitope_len = len(max(epitopes, key=len))

    X = np.zeros((len(antigens),max_antigen_len, len(aa_chars)),dtype=np.bool)
    y = np.zeros((len(epitopes),max_epitope_len, len(aa_chars)),dtype=np.bool)

    ctable = CharacterTable(aa_chars, max_antigen_len)

    sys.stderr.write("Begin vectorization\n")
    for i, antigen in enumerate(antigens):
        X[i] = ctable.encode(antigen, maxlen=max_antigen_len)
    for i, epitope in enumerate(epitopes):
        y[i] = ctable.encode(epitope, maxlen=max_epitope_len)


    # Shuffle (X, y) in unison as the later parts of X will almost all be larger digits
    indices = np.arange(len(y))
    np.random.shuffle(indices)
    X = X[indices]
    y = y[indices]

    # Explicitly set apart 10% for validation data that we never train over
    split_at = len(X) - len(X) / 10
    (X_train, X_val) = (slice_X(X, 0, split_at), slice_X(X, split_at))
    (y_train, y_val) = (y[:split_at], y[split_at:])

    sys.stderr.write("Build model\n")
    model = Sequential()
    # "Encode" the input sequence using an RNN, producing an output of HIDDEN_SIZE
    # note: in a situation where your input sequences have a variable length,
    # use input_shape=(None, nb_feature).
    model.add(RNN(HIDDEN_SIZE, input_shape=(max_antigen_len, len(aa_chars))))
    # For the decoder's input, we repeat the encoded input for each time step
    model.add(RepeatVector(max_epitope_len))
    # The decoder RNN could be multiple layers stacked or a single layer
    for _ in range(LAYERS):
        model.add(RNN(HIDDEN_SIZE, return_sequences=True))

    # For each of step of the output sequence, decide which character should be chosen
    model.add(TimeDistributed(Dense(len(aa_chars))))
    model.add(Activation('softmax'))

    model.compile(loss='categorical_crossentropy',
                optimizer='adam',
                metrics=['accuracy'])

    # Train the model each generation and show predictions against the validation dataset
    for iteration in range(1, 200):
        print()
        print('-' * 50)
        print('Iteration', iteration)
        model.fit(X_train, y_train, batch_size=BATCH_SIZE, nb_epoch=5,
                validation_data=(X_val, y_val))
        ###
        # Select 10 samples from the validation set at random so we can visualize errors
        for i in range(10):
            ind = np.random.randint(0, len(X_val))
            rowX, rowy = X_val[np.array([ind])], y_val[np.array([ind])]
            preds = model.predict_classes(rowX, verbose=0)
            q = ctable.decode(rowX[0])
            correct = ctable.decode(rowy[0])
            guess = ctable.decode(preds[0], calc_argmax=False)
            # print('Q', q[::-1] if INVERT else q)
            print('T', correct)
            print(colors.ok + '☑' + colors.close if correct == guess else colors.fail + '☒' + colors.close, guess)
            print('---')

if __name__ == '__main__':
    main()
  1. RNN,LSTM或GRU可用于预测上面提到的子序列吗?

是的,你可以使用其中任何一个。 LSTM和GRU是RNN的类型; 如果RNN你的意思是一个完全连接的RNN ,这些已经失宠,因为消失的梯度问题( 12 )。 由于数据集中的示例数量相对较少,因此GRU可能优于LSTM,因为它的架构更简单。

  1. 如何提高代码的准确性?

您提到培训和验证错误都很糟糕。 一般来说,这可能是由于以下几个因素之一:

  • 学习速度太低(因为您使用的是Adam,一个每参数自适应学习速率算法,因此不是问题)
  • 该模型对于数据而言过于简单(根本不是问题,因为您有一个非常复杂的模型和一个小数据集)
  • 你有渐弱的渐变(可能是你有3层RNN的问题)。 尝试将层数减少到1(通常,最好先让简单的模型工作,然后增加复杂性),并考虑超参数搜索(例如128维隐藏状态可能太大 - 尝试30? )。

另一种选择,因为您的表位是您输入的子串,是预测抗原序列中表位的起始和终止指数 (可能通过抗原序列的长度标准化),而不是一次预测子字符串一个字符。 这将是两个任务的回归问题。 例如,如果抗原是FSKIAGLTVT(10个字母长)并且其表位是KIAGL(位置3到7,一个基础)那么输入将是FSKIAGLTVT并且输出将是0.3(第一任务)和0.7(第二任务) 。

另外,如果你可以让所有的抗原是相同的长度(与短抗原消除您的数据集的部件和/或斩去长抗原的两端假设你知道一个先验的表位附近没有结束),你可以将它作为一个分类问题,包括两个任务(开始和结束)和序列长度类,你试图在每个位置开始和结束时为抗原分配一个概率。

  1. 如何修改我的代码以便它可以更快地运行?

减少层数将大大加快代码速度。 此外,由于结构更简单,GRU将比LSTM更快。 但是,两种类型的循环网络都比例如卷积网络慢。

如果您对合作感兴趣,请随时给我发送电子邮件(我的个人资料中的地址)。

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM