簡體   English   中英

Python如何插入2D數據的大點雲

[英]Python how to interpolate large point clouds of 2D data

所以,假設我有一個Z = f(X,Y)形式的點雲數據

問題是我有數百萬個點,數據在某些(X,Y)區域非常精細,而在其他區域極其稀疏。

理想情況下,插值解決方案需要是連續的,並且盡可能平滑。 該應用程序用於有限元分析。

我試過了:

  • 我沒有插值,而是使用KDTree來平均最近的節點。 這對於精細區域中的點非常有效,但在稀疏區域中不太好,因為可能出現結果中的不連續性。
  • scipy.interpolate.XXX - 2d函數遇到內存錯誤。 scipy庫不能插入大量的點。

我認為最好的方法是將某些KDTree平均最近節點組合起來,然后對遠點進行某種插值,但我認為插入數百萬個點應該解決問題......

誰有什么好主意怎么辦?

因此,為了插入任意大的點雲,我編寫了一段代碼來將數據分成更小的塊。 它不是最好的代碼片段,但是對於那些懶得自己編寫代碼的人來說是可用的。

import scipy.interpolate
from scipy.interpolate import griddata
from scipy.spatial.qhull import QhullError



class Interp2P(object):
    """
    Reconstruction of interpolation for 2d applications.
    This class is used to avoid any memory errors due to interpolation 
    of large numbers of points.

    Built for use for extremely large point clouds. Interpolation
    is partitioned into automatic control parameters px, py, pe, blockpts. 
    The scipy implementation of interpolation functions has memory problems
    for large point clouds. This class divides the problem into several
    smaller partitions.


    Parameters
    ----------
    points : array shape (a, 2)
        table of point coordinates describing z = f(x,y) where

        - column 0 = x
        - column 1 = y

    values : array of shape (a, b)
        Corresponding values z = f(x, y)

        values may possibly have multiple columns,
        depending on the interpolator kind used. 

    kind : str
        Interpolation method. Can be

        - 'nearest'
        - 'linear'
        - 'cubic'

    px : int or None
        Number of partitions in x-direction. If None, a default is calculated
        according to the number of blockpts
    py : int or None
        Number of partitions in y-direction. If None, a default is calculated
        according to the number of blockpts.
    pe : scalar 
        Proportion of block length to overlap on other blocks. 
        For example, if pe=0.25, the block will be extended 25% on both the 
        left and right sides of px to overlap on successive blocks. 

    blockpts : int
        Approximate number of interpolation points within each partition block.
        Defaults to 300*300. blockpts is used to automatically size either
        px or py if these are set to None. 

    """    
    def __init__(self, points, values, kind='linear', 
                 px = None, py = None, pe = 0.5, blockpts = 300*300,
                 **kwargs):
        points = np.array(points)
        self.x = points[:, 0]
        self.y = points[:, 1]
        self.z = np.array(values)
        self.points = points
        self.values = np.array(self.z)

        self.kind = kind
        self.kwargs = kwargs
        self.px = px
        self.py = py
        self.pe = pe
        self.blockpts = blockpts
        self._set_partitions()
        return


    def _set_partitions(self):
        """ Calculate the number of partitions to use in data set"""
        ptnum = len(self.x)
        blockpts = self.blockpts

        blocknum = ptnum / blockpts + 1
        if self.px is None:
            if self.py is None:
                self.px = int(np.sqrt(blocknum))
                self.py = int(blocknum / self.px)
            else:
                self.px = int(blocknum / self.py)

        if self.py is None:
            self.py = int(blocknum / self.px)

        self.px = max(self.px, 1)
        self.py = max(self.py, 1)

        self.xmax = np.max(self.x)
        self.xmin = np.min(self.x)
        self.xlen = self.xmax - self.xmin
        self.xp = self.xlen / self.px       # block x length
        self.xe = self.xp * self.pe         # block x overlap length

        self.ymax = np.max(self.y)
        self.ymin = np.min(self.y)
        self.ylen = self.ymax - self.ymin
        self.yp = self.ylen / self.py       # block y length    
        self.ye = self.yp * self.pe         # block y overlap length


        xfudge = (self.xmax - self.xmin) / 1000.
        yfudge = (self.ymax - self.ymin) / 1000.

        # Construct block upper/lower limits
        xl = self.xmin - xfudge
        xu = self.xmax + xfudge
        yl = self.ymin - yfudge
        yu = self.ymax + yfudge

        # Construct blocks        
        self.xblocks = np.linspace(xl, xu, self.px + 1)
        self.yblocks = np.linspace(yl, yu, self.py + 1)        
        return


    def _choose_block(self, x, y):
        """
        Calculate which interpolation block to use for the given 
        coordinates (x, y)

        Returns
        --------
        xindex : int array of shape (N,)
            index locations for x-dimension of blocks
        yindex : int array of shape (N,)
            index locations for y-dimension of blocks

        """
        xindex = np.searchsorted(self.xblocks, x) - 1
        yindex = np.searchsorted(self.yblocks, y) - 1
        return xindex, yindex


    @lazy_property
    def _template_interp(self):
        """
        Construct template interpolator function based on kind 
        """

        if self.kind == 'linear':
            template = scipy.interpolate.LinearNDInterpolator

        elif self.kind == 'cubic':
            template = scipy.interpolate.CloughTocher2DInterpolator

        elif self.kind == 'nearest':
            template = scipy.interpolate.NearestNDInterpolator

        elif self.kind == 'rbf':
            template = Rbf_wrapper
#            def func1(points, values, **kwargs):
#                args = np.column_stack((points, values))
#                f = scipy.interpolate.Rbf(args, **kwargs)
#                return f
#            template = func1

        return template


    @lazy_property
    def _interpolators(self):
        """
        Construct interpolators for every block.

        - 0 dimension corresponds to x data.
        - 1 dimension corresponds to y data.

        """

        # Bounds of block interpolation points
        xl_arr = self.xblocks[0:-1] - self.xe
        xu_arr = self.xblocks[1:]  + self.xe

        yl_arr = self.yblocks[0:-1] - self.ye
        yu_arr = self.yblocks[1:] + self.ye

        # Loop through all block boundaries and construct interpolators. 
        interpolators = []
        for (xl, xu) in zip(xl_arr, xu_arr):
            interpx = []
            for (yl, yu) in zip(yl_arr, yu_arr):

                #Set original data partition
                ix0 = np.logical_and(xl <= self.x, self.x <= xu)
                iy0 = np.logical_and(yl <= self.y, self.y <= yu)
                index1 = np.logical_and(ix0, iy0)
                x0 = self.x[index1]
                y0 = self.y[index1]
                z0 = self.z[index1]
                points = np.column_stack((x0, y0))
                try:
                    interp1 = self._template_interp(points, z0, **self.kwargs)
                    interpx.append(interp1)
                except ValueError:
                    interpx.append(None)
            interpolators.append(interpx)
        return interpolators


    def interpolate(self, x, y):
        """Interpolate points. 

        Parameters
        ----------
        x : array of shape (m,)
            x-coordinates of desired points to interpolate
        y : array of shape (m,)
            y-coordinates of desired points to interpolate

        Returns
        -------
        values : array of shape (m, n)
            interpolated values of points. 
        """
        x = np.atleast_1d(x)
        y = np.atleast_1d(y)
        xlen = len(x)

        # Property shape the result        
        shape = list(self.z.shape)
        shape[0] = xlen
        result = np.empty(shape)
        result[:] = np.nan

        # Loop through all block boundaries and send points to the block's
        # corresponding interpolator. 

        xindex, yindex = self._choose_block(x, y)
        for ix in range(self.px):
            for iy in range(self.py):
                index1 = xindex == ix
                index2 = yindex == iy
                index = np.logical_and(index1, index2)
                interp = self._interpolators[ix][iy]

                points = np.column_stack((x[index], y[index]))
                if len(points) > 0:
                    result[index] = interp(points)
        return result


    def __call__(self, points):
        """
        Interpolate in the style of LinearNDInterpolator.

        Parameters
        ----------
        points : array of shape (m, 2)
            coordinates of x (column 0) and y (column 1). 

        Returns
        -------
        values : array of shape (m, n)
            interpolated values of points. 
        """
        points = np.atleast_2d(points)
        x = points[:, 0]
        y = points[:, 1]
        return self.interpolate(x, y)





def lazy_property(fn):
    """
    Version of lazy_property by John Huang.

    Decorator used to cache property results into dictionary.
    The cache can be clered using clean_lazy_properties.
    """

    cache_name = _data_holder_attr
    attr_name = fn.__name__

    def get_cache(instance):
        if not hasattr(instance, cache_name):
            setattr(instance, cache_name, {})
        return getattr(instance, cache_name)

    @property
    @wraps(fn)
    def get_attr(self):
        cache = get_cache(self)
        if attr_name not in cache:
            cache[attr_name] = fn(self)
        return cache[attr_name]

    return get_attr

暫無
暫無

聲明:本站的技術帖子網頁,遵循CC BY-SA 4.0協議,如果您需要轉載,請注明本站網址或者原文地址。任何問題請咨詢:yoyou2525@163.com.

 
粵ICP備18138465號  © 2020-2024 STACKOOM.COM