簡體   English   中英

如何使用scipy獲得非平滑2D樣條插值

[英]How to get a non-smoothing 2D spline interpolation with scipy

我想將2D三次樣條曲線擬合到一些不規則間隔的數據(即,一個函數完全適合給定點的數據),但也可以返回介於兩者之間的值。

所有我能找到(對於irregural間隔數據) scipy.interpolate.SmoothBivariateSpline 我不知道如何關閉“平滑”功能(無論我在s參數中輸入什么值。

但是,我確實發現,通過scipy.interpolate.griddata我可以得到大部分我想要的scipy.interpolate.griddata -盡管每次都必須重新計算它(即不只是生成函數)。 從根本上說,這兩者之間是否有區別-即griddata做的事情不同於“樣條曲線”? 無論如何,是否可以關閉SmoothBivariateSpline平滑或不平滑的等效函數?

以下是我用來測試樣條曲線與多項式擬合的腳本

import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import scipy.optimize
import scipy.interpolate
import matplotlib.pyplot as plt
import numpy.polynomial.polynomial as poly


# Grid and test function
N = 9;
x,y = np.linspace(-1,1, N), np.linspace(-1,1, N)
X,Y = np.meshgrid(x,y)
F = lambda X,Y : X+Y-1*X*Y-(X*Y)**2 -2*X*Y**2 + X**2*Y + 3*np.exp(-((X+1)**2+(Y+1)**2)*5)
Z = F(X,Y)
noise = 0.4
Z *= 1+(np.random.random(Z.shape)*2-1)*noise # noise

# Finer Grid and test function
N2 = 19;
x2,y2 = np.linspace(-1,1, N2), np.linspace(-1,1, N2)
X2,Y2 = np.meshgrid(x2,y2)
Z2 = F(X2,Y2)

# Make data into lists
Xl = X.reshape(X.size)
Yl = Y.reshape(Y.size)
Zl = Z.reshape(Z.size)

# Polynomial fit
# polyval(x,y,p) = p[0,0]+p[0,1]y+p[1,0]x+p[1,1]xy+p[1,2]xy^2 ..., etc
# I use a flat (1D) array for p, so it needs to be reshaped into a 2D array before
# passing to polyval
order = 3
p0 = np.zeros(order**2) # guess parameters (all 0 for now)
f_poly = lambda x,y,p : poly.polyval2d(x,y,p.reshape((order,order))) # Wrapper for our polynomial
errf = lambda p : np.mean((f_poly(Xl,Yl,p.reshape((order,order)))-Zl)**2) # error function to find least square error
sol = scipy.optimize.minimize(errf, p0)
psol = sol['x']

# Spline interpolation
# Bivariate (2D), Smoothed (doesn't fit points *exactly*)  cubic (3rd order - i.e. kx=ky=3) spline
spl = scipy.interpolate.SmoothBivariateSpline(Xl, Yl, Zl, kx=3,ky=3)
f_spline = spl.ev

# regular Interpolate
f_interp = lambda x,y : scipy.interpolate.griddata((Xl, Yl), Zl, (x,y), method='cubic')

# Plot
fig = plt.figure(1, figsize=(7,8))
plt.clf()

# poly fit
ax = fig.add_subplot(311, projection='3d')
ax.scatter3D(X2,Y2,Z2,s=3, color='red', label='actual data')
fit = f_poly(X2,Y2, psol)
l = 'order {} poly fit'.format(order)
ax.plot_wireframe(X2,Y2, fit, color='black', label=l)
ax.scatter3D(X,Y,Z, color='blue', label='noisy data')
plt.legend()
print("Average {} error: {}".format(l, np.sqrt(np.mean((fit-Z2)**2))))

# spline fit
ax = fig.add_subplot(312, projection='3d')
ax.scatter3D(X2,Y2,Z2,s=3, color='red', label='actual data')
l = 'smoothed spline'
fit = f_spline(X2,Y2)
ax.plot_wireframe(X2,Y2, fit, color='black', label=l)
ax.scatter3D(X,Y,Z, color='blue', label='noisy data')
plt.legend()
print("Average {} error: {}".format(l, np.sqrt(np.mean((fit-Z2)**2))))

# interp fit
ax = fig.add_subplot(313, projection='3d')
ax.scatter3D(X2,Y2,Z2,s=3, color='red', label='actual data')
l='3rd order interp '
fit=f_interp(X2,Y2)
ax.plot_wireframe(X2,Y2, fit, color='black', label=l)
ax.scatter3D(X,Y,Z, color='blue', label='noisy data')
plt.legend()
print("Average {} error: {}".format(l, np.sqrt(np.mean((fit-Z2)**2))))

plt.show(False)
plt.pause(1)

raw_input('press key to continue') # Change to input() if using python3

在此處輸入圖片說明

對於非結構化網格, griddata是正確的插值工具。 但是,每次執行三角剖分(Delaunay)和插值。 一種解決方法是將CloughTocher2DInterpolator用於C1平滑插值,或者將LinearNDInterpolator用於線性插值。 這些是griddata實際使用的功能。 區別在於可以將Delaunay object用作輸入,並返回插值函數。

這是一個基於您的代碼的示例:

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

import numpy as np
from scipy.interpolate import CloughTocher2DInterpolator
from scipy.spatial import Delaunay

# Example unstructured mesh:
nodes = np.array([[-1.        , -1.        ],
       [ 1.        , -1.        ],
       [ 1.        ,  1.        ],
       [-1.        ,  1.        ],
       [ 0.        ,  0.        ],
       [-1.        ,  0.        ],
       [ 0.        , -1.        ],
       [-0.5       ,  0.        ],
       [ 0.        ,  1.        ],
       [-0.75      ,  0.4       ],
       [-0.5       ,  1.        ],
       [-1.        , -0.6       ],
       [-0.25      , -0.5       ],
       [-0.5       , -1.        ],
       [-0.20833333,  0.5       ],
       [ 1.        ,  0.        ],
       [ 0.5       ,  1.        ],
       [ 0.36174242,  0.44412879],
       [ 0.5       , -0.03786566],
       [ 0.2927264 , -0.5411368 ],
       [ 0.5       , -1.        ],
       [ 1.        ,  0.5       ],
       [ 1.        , -0.5       ]])

# Theoretical function:
def F(x, y):
    return x + y -  x*y - (x*y)**2 - 2*x*y**2 + x**2*y + 3*np.exp( -((x+1)**2 + (y+1)**2)*5 )

z = F(nodes[:, 0], nodes[:, 1])

# Finer regular grid:
N2 = 19
x2, y2 = np.linspace(-1, 1, N2), np.linspace(-1, 1, N2)
X2, Y2 = np.meshgrid(x2, y2)

# Interpolation:
tri = Delaunay(nodes)
CT_interpolator = CloughTocher2DInterpolator(tri, z)
z_interpolated = CT_interpolator(X2, Y2)

# Plot
fig = plt.figure(1, figsize=(8,14))

ax = fig.add_subplot(311, projection='3d')
ax.scatter3D(nodes[:, 0], nodes[:, 1], z, s=15, color='red', label='points')

ax.plot_wireframe(X2, Y2, z_interpolated, color='black', label='interpolated')
plt.legend();

獲得的圖形為:

示例圖

樣條方法和Clough-Tocher插值均基於在網格元素上構建分段多項式函數的基礎。 區別在於,對於樣條曲線,網格是規則的,並由算法指定(請參見.get_knots() )。 並擬合系數,以使函數盡可能靠近點並平滑(擬合)。 對於Clough-Tocher插值,網格元素是作為輸入給出的元素。 因此,保證所產生的功能可以通過這些點。

暫無
暫無

聲明:本站的技術帖子網頁,遵循CC BY-SA 4.0協議,如果您需要轉載,請注明本站網址或者原文地址。任何問題請咨詢:yoyou2525@163.com.

 
粵ICP備18138465號  © 2020-2024 STACKOOM.COM