繁体   English   中英

计算python中两个旋转矩形的交集区域

[英]Calculate the area of intersection of two rotated rectangles in python

我有两个2D旋转矩形,定义为(中心x,中心y,高度,宽度)和旋转角度(0-360°)。 我如何计算这两个旋转矩形的交叉区域。

这些任务使用计算几何包解决,例如Shapely

import shapely.geometry
import shapely.affinity

class RotatedRect:
    def __init__(self, cx, cy, w, h, angle):
        self.cx = cx
        self.cy = cy
        self.w = w
        self.h = h
        self.angle = angle

    def get_contour(self):
        w = self.w
        h = self.h
        c = shapely.geometry.box(-w/2.0, -h/2.0, w/2.0, h/2.0)
        rc = shapely.affinity.rotate(c, self.angle)
        return shapely.affinity.translate(rc, self.cx, self.cy)

    def intersection(self, other):
        return self.get_contour().intersection(other.get_contour())


r1 = RotatedRect(10, 15, 15, 10, 30)
r2 = RotatedRect(15, 15, 20, 10, 0)

from matplotlib import pyplot
from descartes import PolygonPatch

fig = pyplot.figure(1, figsize=(10, 4))
ax = fig.add_subplot(121)
ax.set_xlim(0, 30)
ax.set_ylim(0, 30)

ax.add_patch(PolygonPatch(r1.get_contour(), fc='#990000', alpha=0.7))
ax.add_patch(PolygonPatch(r2.get_contour(), fc='#000099', alpha=0.7))
ax.add_patch(PolygonPatch(r1.intersection(r2), fc='#009900', alpha=1))

pyplot.show()

在此输入图像描述

这是一个不使用Python标准库之外的任何库的解决方案。

确定两个矩形的交叉区域可以分为两个子问题:

  • 找到交叉点多边形,如果有的话;
  • 确定交叉点多边形的面积。

使用矩形的顶点(角)时,这两个问题都相对容易。 所以首先你必须确定这些顶点。 假设坐标原点位于矩形的中心,顶点是从逆时针方向的左下角开始:( - (-w/2, -h/2)(w/2, -h/2)(w/2, h/2)(-w/2, h/2) 将其旋转到角度a ,并将它们平移到矩形中心的正确位置,这些变为: (cx + (-w/2)cos(a) - (-h/2)sin(a), cy + (-w/2)sin(a) + (-h/2)cos(a)) ,和其他角点类似。

确定交叉点多边形的一种简单方法如下:从一个矩形开始作为候选交叉点多边形。 然后在应用顺序切削的过程中(如所描述这里简而言之:你把反过来第二矩形的各边,并从候选相交多边形是由所述边缘限定的“外”半平面中的所有部件(在两个方向上进行扩展)。对所有边执行此操作会使候选交叉点多边形仅包含第二个矩形内部或其边界上的部分。

可以从顶点的坐标计算所得多边形的面积(由一系列顶点定义)。 您将每条边的顶点的叉积(再次按逆时针顺序)相加,然后将其除以2。 参见例如www.mathopenref.com/coordpolygonarea.html

足够的理论和解释。 这是代码:

from math import pi, cos, sin


class Vector:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __add__(self, v):
        if not isinstance(v, Vector):
            return NotImplemented
        return Vector(self.x + v.x, self.y + v.y)

    def __sub__(self, v):
        if not isinstance(v, Vector):
            return NotImplemented
        return Vector(self.x - v.x, self.y - v.y)

    def cross(self, v):
        if not isinstance(v, Vector):
            return NotImplemented
        return self.x*v.y - self.y*v.x


class Line:
    # ax + by + c = 0
    def __init__(self, v1, v2):
        self.a = v2.y - v1.y
        self.b = v1.x - v2.x
        self.c = v2.cross(v1)

    def __call__(self, p):
        return self.a*p.x + self.b*p.y + self.c

    def intersection(self, other):
        # See e.g.     https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection#Using_homogeneous_coordinates
        if not isinstance(other, Line):
            return NotImplemented
        w = self.a*other.b - self.b*other.a
        return Vector(
            (self.b*other.c - self.c*other.b)/w,
            (self.c*other.a - self.a*other.c)/w
        )


def rectangle_vertices(cx, cy, w, h, r):
    angle = pi*r/180
    dx = w/2
    dy = h/2
    dxcos = dx*cos(angle)
    dxsin = dx*sin(angle)
    dycos = dy*cos(angle)
    dysin = dy*sin(angle)
    return (
        Vector(cx, cy) + Vector(-dxcos - -dysin, -dxsin + -dycos),
        Vector(cx, cy) + Vector( dxcos - -dysin,  dxsin + -dycos),
        Vector(cx, cy) + Vector( dxcos -  dysin,  dxsin +  dycos),
        Vector(cx, cy) + Vector(-dxcos -  dysin, -dxsin +  dycos)
    )

def intersection_area(r1, r2):
    # r1 and r2 are in (center, width, height, rotation) representation
    # First convert these into a sequence of vertices

    rect1 = rectangle_vertices(*r1)
    rect2 = rectangle_vertices(*r2)

    # Use the vertices of the first rectangle as
    # starting vertices of the intersection polygon.
    intersection = rect1

    # Loop over the edges of the second rectangle
    for p, q in zip(rect2, rect2[1:] + rect2[:1]):
        if len(intersection) <= 2:
            break # No intersection

        line = Line(p, q)

        # Any point p with line(p) <= 0 is on the "inside" (or on the boundary),
        # any point p with line(p) > 0 is on the "outside".

        # Loop over the edges of the intersection polygon,
        # and determine which part is inside and which is outside.
        new_intersection = []
        line_values = [line(t) for t in intersection]
        for s, t, s_value, t_value in zip(
            intersection, intersection[1:] + intersection[:1],
            line_values, line_values[1:] + line_values[:1]):
            if s_value <= 0:
                new_intersection.append(s)
            if s_value * t_value < 0:
                # Points are on opposite sides.
                # Add the intersection of the lines to new_intersection.
                intersection_point = line.intersection(Line(s, t))
                new_intersection.append(intersection_point)

        intersection = new_intersection

    # Calculate area
    if len(intersection) <= 2:
        return 0

    return 0.5 * sum(p.x*q.y - p.y*q.x for p, q in
                     zip(intersection, intersection[1:] + intersection[:1]))


if __name__ == '__main__':
    r1 = (10, 15, 15, 10, 30)
    r2 = (15, 15, 20, 10, 0)
    print(intersection_area(r1, r2))
intersection, pnt = contourIntersection(rect1, rect2)

在此输入图像描述

在查看此问题的可能重复页面之后,我找不到完整的python答案,所以这是我使用屏蔽的解决方案。 此功能适用于任何角度的复杂形状,而不仅仅是矩形

您将旋转的矩形的2个轮廓作为参数传递,如果没有交叉,则返回“无”,或者相交于原始图像的相交区域的图像和该图像的左/上位置,轮廓取自

使用python,cv2和numpy

import cv2
import math
import numpy as np


def contourIntersection(con1, con2, showContours=False):

    # skip if no bounding rect intersection
    leftmost1 = tuple(con1[con1[:, :, 0].argmin()][0])
    topmost1 = tuple(con1[con1[:, :, 1].argmin()][0])
    leftmost2 = tuple(con2[con2[:, :, 0].argmin()][0])
    topmost2 = tuple(con2[con2[:, :, 1].argmin()][0])

    rightmost1 = tuple(con1[con1[:, :, 0].argmax()][0])
    bottommost1 = tuple(con1[con1[:, :, 1].argmax()][0])
    rightmost2 = tuple(con2[con2[:, :, 0].argmax()][0])
    bottommost2 = tuple(con2[con2[:, :, 1].argmax()][0])

    if rightmost1[0] < leftmost2[0] or rightmost2[0] < leftmost1[0] or bottommost1[1] < topmost2[1] or bottommost2[1] < topmost1[1]:
        return None, None

    # reset top / left to 0
    left = leftmost1[0] if leftmost1[0] < leftmost2[0] else leftmost2[0]
    top = topmost1[1] if topmost1[1] < topmost2[1] else topmost2[1]

    newCon1 = []
    for pnt in con1:

        newLeft = pnt[0][0] - left
        newTop = pnt[0][1] - top

        newCon1.append([newLeft, newTop])
    # next
    con1_new = np.array([newCon1], dtype=np.int32)

    newCon2 = []
    for pnt in con2:

        newLeft = pnt[0][0] - left
        newTop = pnt[0][1] - top

        newCon2.append([newLeft, newTop])
    # next
    con2_new = np.array([newCon2], dtype=np.int32)

    # width / height
    right1 = rightmost1[0] - left
    bottom1 = bottommost1[1] - top
    right2 = rightmost2[0] - left
    bottom2 = bottommost2[1] - top

    width = right1 if right1 > right2 else right2
    height = bottom1 if bottom1 > bottom2 else bottom2

    # create images
    img1 = np.zeros([height, width], np.uint8)
    cv2.drawContours(img1, con1_new, -1, (255, 255, 255), -1)

    img2 = np.zeros([height, width], np.uint8)
    cv2.drawContours(img2, con2_new, -1, (255, 255, 255), -1)

    # mask images together using AND
    imgIntersection = cv2.bitwise_and(img1, img2)

    if showContours:
        img1[img1 > 254] = 128
        img2[img2 > 254] = 100

        imgAll = cv2.bitwise_or(img1, img2)
        cv2.imshow('Merged Images', imgAll)

    # end if

    if not imgIntersection.sum():
        return None, None

    # trim
    while not imgIntersection[0].sum():
        imgIntersection = np.delete(imgIntersection, (0), axis=0)
        top += 1

    while not imgIntersection[-1].sum():
        imgIntersection = np.delete(imgIntersection, (-1), axis=0)

    while not imgIntersection[:, 0].sum():
        imgIntersection = np.delete(imgIntersection, (0), axis=1)
        left += 1

    while not imgIntersection[:, -1].sum():
        imgIntersection = np.delete(imgIntersection, (-1), axis=1)

    return imgIntersection, (left, top)
# end function

要完成答案,您可以使用上面的函数,其中包含2个旋转矩形的CenterX,CenterY,Width,Height和Angle的值,我添加了以下函数。 简单地将代码底部的Rect1和Rect2属性更改为您自己的属性

def pixelsBetweenPoints(xy1, xy2):
    X = abs(xy1[0] - xy2[0])
    Y = abs(xy1[1] - xy2[1])

    return int(math.sqrt((X ** 2) + (Y ** 2)))
# end function


def rotatePoint(angle, centerPoint, dist):
    xRatio = math.cos(math.radians(angle))
    yRatio = math.sin(math.radians(angle))
    xPotted = int(centerPoint[0] + (dist * xRatio))
    yPlotted = int(centerPoint[1] + (dist * yRatio))
    newPoint = [xPotted, yPlotted]

    return newPoint
# end function


def angleBetweenPoints(pnt1, pnt2):
    A_B = pixelsBetweenPoints(pnt1, pnt2)

    pnt3 = (pnt1[0] + A_B, pnt1[1])
    C = pixelsBetweenPoints(pnt2, pnt3)

    angle = math.degrees(math.acos((A_B * A_B + A_B * A_B - C * C) / (2.0 * A_B * A_B)))

    # reverse if above horizon
    if pnt2[1] < pnt1[1]:
        angle = angle * -1
    # end if

    return angle
# end function


def rotateRectContour(xCenter, yCenter, height, width, angle):
    # calc positions
    top = int(yCenter - (height / 2))
    left = int(xCenter - (width / 2))
    right = left + width

    rightTop = (right, top)
    centerPoint = (xCenter, yCenter)

    # new right / top point
    rectAngle = angleBetweenPoints(centerPoint, rightTop)
    angleRightTop = angle + rectAngle
    angleRightBottom = angle + 180 - rectAngle
    angleLeftBottom = angle + 180 + rectAngle
    angleLeftTop = angle - rectAngle

    distance = pixelsBetweenPoints(centerPoint, rightTop)
    rightTop_new = rotatePoint(angleRightTop, centerPoint, distance)
    rightBottom_new = rotatePoint(angleRightBottom, centerPoint, distance)
    leftBottom_new = rotatePoint(angleLeftBottom, centerPoint, distance)
    leftTop_new = rotatePoint(angleLeftTop, centerPoint, distance)

    contourList = [[leftTop_new], [rightTop_new], [rightBottom_new], [leftBottom_new]]
    contour = np.array(contourList, dtype=np.int32)

    return contour
# end function


# rect1
xCenter_1 = 40
yCenter_1 = 20
height_1 = 200
width_1 = 80
angle_1 = 45

rect1 = rotateRectContour(xCenter_1, yCenter_1, height_1, width_1, angle_1)

# rect2
xCenter_2 = 80
yCenter_2 = 25
height_2 = 180
width_2 = 50
angle_2 = 123

rect2 = rotateRectContour(xCenter_2, yCenter_2, height_2, width_2, angle_2)

intersection, pnt = contourIntersection(rect1, rect2, True)

if intersection is None:
    print('No intersection')
else:
    print('Area of intersection = ' + str(int(intersection.sum() / 255)))
    cv2.imshow('Intersection', intersection)
# end if

cv2.waitKey(0)

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM